以F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)且經(jīng)過點(diǎn)P(1,
32
)的橢圓的方程為
 
分析:首先設(shè)出橢圓的標(biāo)準(zhǔn)方程
x2
a2
+
y2
b2
=1
,然后根據(jù)題意,求出a、b滿足的2個(gè)關(guān)系式,解方程即可.
解答:解:設(shè)橢圓E的方程為
x2
a2
+
y2
b2
=1
(a>b>0).
∵c=1,
∴a2-b2=1①,
∵點(diǎn)(1,
3
2
)在橢圓E上,
1
a2
+
9
4b2
=1
②,
由①、②得:a2=4,b2=3,
∴橢圓E的方程為:
x2
4
+
y2
3
=1
點(diǎn)評(píng):本題應(yīng)用了求橢圓標(biāo)準(zhǔn)方程的常規(guī)做法:待定系數(shù)法,熟練掌握橢圓的幾何性質(zhì)是解題的關(guān)鍵,同時(shí)考查了學(xué)生的基本運(yùn)算能力與運(yùn)算技巧.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C以F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn),且離心率e=
2
2

(Ⅰ)求橢圓C的方程
(Ⅱ)過M(0 , 
2
)
點(diǎn)斜率為k的直線l1與橢圓C有兩個(gè)不同交點(diǎn)P、Q,求k的范圍
(Ⅲ)設(shè)橢圓C與x軸正半軸、y軸正半軸的交點(diǎn)分別為A、B,是否存在直線l1,滿足(Ⅱ)中的條件且使得向量
OP
+
OQ
AB
垂直?如果存在,寫出l1的方程;如果不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以F1(-1,0)、F2(1,0)為焦點(diǎn)且與直線x-y+3=0有公共點(diǎn)的橢圓中,離心率最大的橢圓方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程為y2=4x(x>0),曲線E是以F1(-1,0)、F2(1,0)為焦點(diǎn)的橢圓,點(diǎn)P為曲線C與曲線E在第一象限的交點(diǎn),且|PF2|=
53

(1)求曲線E的標(biāo)準(zhǔn)方程;
(2)直線l與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程為y2=4x(x>0),曲線E是以F1(-1,0)、F2(1,0)為焦點(diǎn)的橢圓,點(diǎn)P為曲線C與曲線E在第一象限的交點(diǎn),且|PF2|=
53

(1)求曲線E的標(biāo)準(zhǔn)方程;
(2)直線l與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案