衛(wèi)健型進(jìn)步型總計(jì)男20女20總計(jì)40(3)若從楊老師當(dāng)天選取的步數(shù)大于10000的好友中按男女比例分層選取人進(jìn)行身體狀況調(diào)查.然后再?gòu)倪@位好友中選取人進(jìn)行訪談.求至少有一位女性好友的概率.附: .0.100.050.0250.0102.7063.8415.0246.635">
【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,楊老師的微信朋友圈內(nèi)有位好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了位微信好友(女人,男人),統(tǒng)計(jì)其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步數(shù)情況可分為五個(gè)類(lèi)別: 步)(說(shuō)明:“”表示大于等于,小于等于.下同), 步), 步), 步), 步及以),且三種類(lèi)別人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的條形圖.
若某人一天的走路步數(shù)超過(guò)步被系統(tǒng)認(rèn)定為“衛(wèi)健型",否則被系統(tǒng)認(rèn)定為“進(jìn)步型”.
(1)若以楊老師選取的好友當(dāng)天行走步數(shù)的頻率分布來(lái)估計(jì)所有微信好友每日走路步數(shù)的概率分布,請(qǐng)估計(jì)楊老師的微信好友圈里參與“微信運(yùn)動(dòng)”的名好友中,每天走路步數(shù)在步的人數(shù);
(2)請(qǐng)根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認(rèn)定“認(rèn)定類(lèi)型”與“性別”有關(guān)?
p> | 衛(wèi)健型 | 進(jìn)步型 | 總計(jì) |
男 | 20 | ||
女 | 20 | ||
總計(jì) | 40 |
(3)若從楊老師當(dāng)天選取的步數(shù)大于10000的好友中按男女比例分層選取人進(jìn)行身體狀況調(diào)查,然后再?gòu)倪@位好友中選取人進(jìn)行訪談,求至少有一位女性好友的概率.
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)375;(2)見(jiàn)解析;(3)
【解析】分析:(1)根據(jù)樣本數(shù)據(jù)男性朋友類(lèi)別設(shè)為人,結(jié)合三種類(lèi)別人數(shù)比例為,即可求得,從而可得名好友中每天走路步數(shù)在步的人數(shù);(2)根據(jù)所給數(shù)據(jù)得出列聯(lián)表,計(jì)算觀測(cè)值,與臨界值比較即可得出結(jié)論;(3)根據(jù)分層抽樣原理,利用列舉法求出基本事件數(shù),即可計(jì)算所求的概率值.
詳解:(1)在樣本數(shù)據(jù)中,男性朋友類(lèi)別設(shè)為人,則由題意可知,可知,故類(lèi)別有人, 類(lèi)別有人, 類(lèi)別有人,走路步數(shù)在步的包括、兩類(lèi)別共計(jì)人;女性朋友走路步數(shù)在步共有人.
用樣本數(shù)據(jù)估計(jì)所有微信好友每日走路步數(shù)的概率分布,則: 人.
(2)根據(jù)題意在抽取的個(gè)樣本數(shù)據(jù)的列聯(lián)表:
衛(wèi)健型 | 進(jìn)步型 | 總計(jì) | |
男 | 14 | 6 | 20 |
女 | 8 | 12 | 20 |
總計(jì) | 22 | 18 | 40 |
得: ,
故沒(méi)有以上的把握認(rèn)為認(rèn)為“評(píng)定類(lèi)型”與“性別”有關(guān)
(3)在步數(shù)大于的好友中分層選取位好友,男性有: 人,記為、、、,女性人記為;從這人中選取人,基本事件是, , , 、、、、、、共種,這人中至少有一位女性好友的事件是, , , 共種,故所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,右頂點(diǎn)為,且過(guò)點(diǎn),圓是以線段為直徑的圓,經(jīng)過(guò)點(diǎn)且傾斜角為的直線與圓相切.
(1)求橢圓及圓的方程;
(2)是否存在直線,使得直線與圓相切,與橢圓交于兩點(diǎn),且滿(mǎn)足?若存在,請(qǐng)求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)(0,4),斜率為-1的直線與拋物線y2=2px(p>0)交于兩點(diǎn)A,B,如果OA⊥OB(O為原點(diǎn)),求拋物線的標(biāo)準(zhǔn)方程及焦點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,是否存在,使得為偶函數(shù),如果存在,請(qǐng)舉例并證明,如果不存在,請(qǐng)說(shuō)明理由;
(2)若,判斷在上的單調(diào)性,并用定義證明;
(3)已知,存在,對(duì)任意,都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示:
文藝節(jié)目 | 新聞節(jié)目 | 總計(jì) | |
20至40歲 | 42 | 16 | 58 |
大于40歲 | 18 | 24 | 42 |
總計(jì) | 60 | 40 | 100 |
(1)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機(jī)抽取5名觀眾,則大于40歲的觀眾應(yīng)該抽取幾名?
(2)由表中數(shù)據(jù)分析,收看新聞節(jié)目的觀眾是否與年齡有關(guān)?
(3)在第(1)中抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.
(提示:,其中.當(dāng)時(shí),有的把握判定兩個(gè)變量有關(guān)聯(lián);當(dāng)時(shí),有的把握判定兩個(gè)變量有關(guān)聯(lián);當(dāng)時(shí),有的把握判定兩個(gè)變量有關(guān)聯(lián).)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線為, 與軸的交點(diǎn)坐標(biāo)為,求的值;
(2)討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假:
(1)點(diǎn)P到圓心O的距離大于圓的半徑是點(diǎn)P在外的充要條件;
(2)兩個(gè)三角形的面積相等是這兩個(gè)三角形全等的充分不必要條件;
(3)是的必要不充分條件;
(4)x或y為有理數(shù)是xy為有理數(shù)的既不充分又不必要條件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com