【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了130t該農(nóng)產(chǎn)品.以x(單位:t,100≤x≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(1)將T表示為x的函數(shù);
(2)根據(jù)直方圖估計利潤T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若x∈[100,110))則取x=105,且x=105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學(xué)期望.
【答案】
(1)解:由題意得,當(dāng)x∈[100,130)時,T=500x﹣300(130﹣x)=800x﹣39000,
當(dāng)x∈[130,150)時,T=500×130=65000,
∴T= .
(2)解:由(1)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤x≤150.
由直方圖知需求量X∈[120,150]的頻率為0.7,
所以下一個銷售季度的利潤T不少于57000元的概率的估計值為0.7.
(3)解:依題意可得T的分布列如圖,
T | 45000 | 53000 | 61000 | 65000 |
p | 0.1 | 0.2 | 0.3 | 0.4 |
所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.
【解析】(1)由題意先分段寫出,當(dāng)x∈[100,130)時,當(dāng)x∈[130,150)時,和利潤值,最后利用分段函數(shù)的形式進(jìn)行綜合即可.(2)由(1)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤x≤150.再由直方圖知需求量X∈[120,150]的頻率為0.7,利用樣本估計總體的方法得出下一個銷售季度的利潤T不少于57000元的概率的估計值.(3)利用利潤T的數(shù)學(xué)期望=各組的區(qū)間中點值×該區(qū)間的頻率之和即得.
【考點精析】本題主要考查了頻率分布直方圖和用樣本的頻率分布估計總體分布的相關(guān)知識點,需要掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;樣本數(shù)據(jù)的頻率分布表和頻率分布直方圖,是通過各小組數(shù)據(jù)在樣本容量中所占比例大小來表示數(shù)據(jù)的分布規(guī)律,它可以讓我們更清楚的看到整個樣本數(shù)據(jù)的頻率分布情況,并由此估計總體的分布情況才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果執(zhí)行右邊的程序框圖,輸入正整數(shù)N(N≥2)和實數(shù)a1 , a2 , …,an , 輸出A,B,則( )
A.A+B為a1 , a2 , …,an的和
B. 為a1 , a2 , …,an的算術(shù)平均數(shù)
C.A和B分別是a1 , a2 , …,an中最大的數(shù)和最小的數(shù)
D.A和B分別是a1 , a2 , …,an中最小的數(shù)和最大的數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形,且底面與側(cè)面垂直, , 分別為線段的中點, , , ,且.
(1)證明: 平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前北方空氣污染越來越嚴(yán)重,某大學(xué)組織學(xué)生參加環(huán)保知識競賽,從參加學(xué)生中抽取40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖,若從成績是80分以上(包括80分)的學(xué)生中選兩人,則他們在同一分?jǐn)?shù)段的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, ,函數(shù).
(1)求在區(qū)間上的最大值和最小值;
(2)若, ,求的值;
(3)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在去年的足球甲聯(lián)賽上,一隊每場比賽平均失球數(shù)是1.5,全年比賽失球個數(shù)的標(biāo)準(zhǔn)差為1.1;二隊每場比賽平均失球數(shù)是2.1,全年失球個數(shù)的標(biāo)準(zhǔn)差是0.4,你認(rèn)為下列說法中正確的個數(shù)有( )
①平均來說一隊比二隊防守技術(shù)好;②二隊比一隊防守技術(shù)水平更穩(wěn)定;③一隊防守有時表現(xiàn)很差,有時表現(xiàn)又非常好;④二隊很少不失球.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用1,2,3,4,5,6組成數(shù)字不重復(fù)的六位數(shù),滿足1不在左右兩端,2,4,6三個偶數(shù)中,有且只有兩個偶數(shù)相鄰,則這樣的六位數(shù)的個數(shù)為( 。
A.432
B.288
C.216
D.144
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a=(5cos x,cos x),b=(sin x,2cos x),設(shè)函數(shù)f(x)=a·b+|b|2+.
(1) 求函數(shù)f (x)的最小正周期和對稱中心;
(2) 當(dāng)時,求函數(shù)f(x)的值域;
(3) 該函數(shù)y=f (x)的圖象可由的圖象經(jīng)過怎樣的變換得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;
③線性回歸直線必過;
④曲線上的點與該點的坐標(biāo)之間具有相關(guān)關(guān)系;
⑤在一個2×2列聯(lián)表中,由計算得K2=13.079.則其兩個變量間有關(guān)系的可能性是90%.
其中錯誤的個數(shù)是( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com