如圖所示,在菱形ABCD中,對(duì)角線AC=6,BD=8,點(diǎn)E、F分別是邊AB、BC的中點(diǎn),點(diǎn)P在AC上運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,存在PE+PF的最小值,則這個(gè)最小值是( )
A.3 B.4 C.5 D.6
C
【解析】解:AC交BD于O,
作E關(guān)于AC的對(duì)稱點(diǎn)N,連接NF,交AC于P,則此時(shí)EP+FP的值最小,
∴PN=PE,
∵四邊形ABCD是菱形,
∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,
∵E為AB的中點(diǎn),
∴N在AD上,且N為AD的中點(diǎn),
NF過(guò)O點(diǎn),
即P、O重合,
∵AN∥BF,AN=BF,
∴四邊形ANFB是平行四邊形,
∴NF=AB,
∵菱形ABCD,
∴AC⊥BD,OA=AC=3,BO=BD=4,
由勾股定理得:AB2= AO2+BO2 =5,
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)高手必修二數(shù)學(xué)蘇教版 蘇教版 題型:044
如圖所示,在菱形ABCD中,∠ABC=60°,PA⊥平面AC,AB=PA=a,PE=EA,求C到平面BDE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江西省名校高考信息卷一(理) 題型:解答題
如圖所示,在菱形ABCD中,∠DAB = 60°,PA⊥底面ABCD,PA = AB = 2,E、F分別是AB與PD的中點(diǎn).
(1) 求證:PC⊥BD;
(2) 求證:AF∥平面PEC;
(3) 求二面角P - EC - D的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com