已知雙曲線x2-
y2
2
=1的焦點為F1、F2,點M在雙曲線上且
MF1
MF2
=0,則△F1MF2的面積為(  )
分析:由雙曲線的定義可得,|MF1-MF2|=2,結合MF1⊥MF2,利用勾股定理可得,MF12+MF22=F1F22=12,即(MF1-MF22+2MF1MF2=12,而三角形的面積S= 
1
2
MF1MF2
,從而可求
解答:解:由雙曲線的定義可得,|MF1-MF2|=2
MF1
MF2
=0∴MF1⊥MF2
Rt△MF1F2
在Rt△MF1F2中,由勾股定理可得,MF12+MF22=F1F22=12
即(MF1-MF22+2MF1MF2=12
∴MF1•MF2=4
三角形的面積S= 
1
2
MF1MF2
=2
故選B.
點評:本題主要考查了雙曲線的定義的簡單應用,解題的關鍵是對已知平方式的變形(MF1-MF22+2MF1MF2=12求解MF1•MF2=4,利用整體思想求解三角形的面積.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、已知雙曲線x2-y2+1=0與拋物線y2=(k-1)x至多有兩個公共點,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=a2(a>0)的左、右頂點分別為A、B,雙曲線在第一象限的圖象上有一點P,∠PAB=α,∠PBA=β,∠APB=γ,則( 。
A、tanα+tanβ+tanγ=0B、tanα+tanβ-tanγ=0C、tanα+tanβ+2tanγ=0D、tanα+tanβ-2tanγ=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=λ與橢圓
x2
16
+
y2
64
=1
有共同的焦點,則λ的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知雙曲線x2-y2=4a(a∈R,a≠0)的右焦點是橢圓
x2
16
+
y2
9
=1
的一個頂點,則a=
2
2

查看答案和解析>>

同步練習冊答案