15、對于四面體ABCD,下列命題正確的序號是
①④⑤

①相對棱AB與CD所在的直線異面;
②由頂點A作四面體的高,其垂足是△BCD的三條高線的交點;
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對棱中點的連線,所得的三條線段相交于一點;
⑤最長棱必有某個端點,由它引出的另兩條棱的長度之和大于最長棱.
分析:①根據(jù)三棱錐的結(jié)構(gòu)特征判斷.②根據(jù)對棱不一定相互垂直判斷.③可由正四面體時來判斷.④由棱中點兩兩連接構(gòu)成平行四邊形判斷.⑤根據(jù)兩邊之和大于第三邊判斷.
解答:解:①根據(jù)三棱錐的結(jié)構(gòu)特征知正確.
②因為只有對棱相互垂直才行,所以不一定,不正確.
③若分別作△ABC和△ABD的邊AB上的高,若是正四面體時,則兩直線相交,不正確.
④因為相對棱中點兩兩連接構(gòu)成平行四邊形,而對棱的中點的連接正是平行四邊形的對角線,所以三條線段相交于一點,故正確.
⑤根據(jù)兩邊之和大于第三邊,可知正確.
故答案為:①④⑤
點評:本題主要考查三棱錐的結(jié)構(gòu)特征,通過作高,取中點連線,來增加考查的難度,即全面又靈活,是一道好題,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、對于四面體ABCD,下列命題正確的是
①④⑤
.(寫出所有正確命題的編號).
①相對棱AB與CD所在的直線是異面直線;
②由頂點A作四面體的高,其垂足是△BCD三條高線的交點;
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高的垂足重合;
④任何三個面的面積之和都大于第四個面的面積;
⑤分別作三組相對棱中點的連線,所得的三條線段相交于一點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、對于四面體ABCD,有如下命題
①棱AB與CD所在的直線異面;
②過點A作四面體ABCD的高,其垂足是△BCD的三條高線的交點;
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線異面;
④分別作三組相對棱的中點連線,所得的三條線段相交于一點,
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、對于四面體ABCD,下列命題正確的是
①④
.(寫出所有正確命題的編號)
①相對棱AB與CD所在的直線異面
②由頂點A作四面體的高,其垂足必是△BCD的三條高線的交點
③若分別作△ABC和△ABD的邊AB上的高,則這兩條高所在直線必異面
④分別作三組相對棱中點的連線,所得的三條線段相交于一點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下五個命題中,正確命題的個數(shù)是
3
3

①不共面的四點中,其中任意三點不共線;
②若a,b,c為空間中不重合的三條直線,若a⊥c,b⊥c,則a∥b;
③對于四面體ABCD,任何三個面的面積之和都大于第四個面的面積;
④對于四面體ABCD,相對棱AB 與CD 所在的直線是異面直線;
⑤各個面都是三角形的幾何體是三棱錐.

查看答案和解析>>

同步練習(xí)冊答案