【題目】已知橢圓:過點,且離心率為.
(1)求橢圓的方程;
(2)過的直線交橢圓于,兩點,判斷點與以線段為直徑的圓的位置關(guān)系,并說明理由.
【答案】(1);(2)見解析.
【解析】試題分析:(1)由橢圓過點,且離心率為,列出方程組,解方程組,即可求得橢圓的方程;(2)法一:先討論斜率為零時,再討論斜率不為零時,設(shè)直線方程,代入橢圓方程,利用韋達定理及兩點之間的距離公式,即可求得,即可判斷點G在以AB為直徑的圓外;法二:先討論斜率為零時,再討論斜率不為零時,設(shè)直線方程,設(shè)直線方程,代入橢圓方程,利用韋達定理及向量的坐標(biāo)運算,求得,則為銳角,即可判斷點G在以AB為直徑的圓外.
試題解析:(1)橢圓E:過點,且離心率為
,
即,
橢圓的方程.
(2)法一:當(dāng)的斜率為時,顯然G與以線段AB為直徑的圓的外面,
當(dāng)的斜率不為時,設(shè)的方程為:,點AB中點為.
由得,
所以
從而.
所以.
,
故,
所以,故G在以AB為直徑的圓外.
法二:當(dāng)的斜率為時,顯然G與以線段AB為直徑的圓的外面,
當(dāng)的斜率不為時,設(shè)的方程為:,設(shè)點,
則,
由得,
.
,
又不共線,所以為銳角,
故點G在以AB為直徑的圓外.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若曲線在點 處的切線方程為.
(Ⅰ)求的解析式;
(Ⅱ)求證:在曲線上任意一點處的切線與直線和所圍成的三角形面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、的坐標(biāo)分別是,,直線,相交于點,且它們的斜率之積為.
(1)求動點的軌跡方程;
(2)若過點的直線交動點的軌跡于、兩點, 且為線段,的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一平面內(nèi)有兩個邊長都是2的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章計算弧田面積所用的經(jīng)驗公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計算出弧田的面積約為( )
A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為6cm,該紙片上的正方形ABCD的中心為O.E,F,G,H為圓O上的點,△ABE,△BCF,△CDG,△ADH分別是以AB,BC,CD,DA為底邊的等腰三角形.沿虛線剪開后,分別以AB,BC,CD,DA為折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合得到一個四棱錐.當(dāng)該四棱錐的側(cè)面積是底面積的2倍時,該四棱錐的外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個命題,
(1)函數(shù)在第一象限是增函數(shù);
(2)在中,“”是“”的充分非必要條件;
(3)函數(shù)圖像關(guān)于點對稱的充要條件是;
(4)若,則.
其中真命題的是_________.(填所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù)f(x)(2x),若f(),θ∈(0,),求tanθ.
(2)若函數(shù)g(x)=﹣(sincos)cos,討論函數(shù)g(x)在區(qū)間[,上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線: 經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求出曲線、的參數(shù)方程;
(Ⅱ)若、分別是曲線、上的動點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com