如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),AB=AD=
2
,CA=CB=CD=BD=2,
(1)求證:BD⊥AC;
(2)求三棱錐E-ADC的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:綜合題,空間位置關(guān)系與距離
分析:(1)連接OC,由BO=DO,AB=AD,知AO⊥BD,由BO=DO,BC=CD,知CO⊥BD,證明直線BD⊥平面AOC,即可證明BD⊥AC;
(2)證明AO即為棱錐的高,根據(jù)等積法可得VE-ACD=VA-CDE,代入棱錐的體積公式,可得答案.
解答: (1)證明:連接OC,∵BO=DO,AB=AD,
∴AO⊥BD,
∵BO=DO,BC=CD,∴CO⊥BD.
∵AO⊥BD,CO⊥BD,AO∩OC=O,
∴直線BD⊥平面AOC,
∵AC?平面AOC,
∴BD⊥AC;
(2)解:在△AOC中,由已知可得AO=1,CO=
3
,而AC=2,
∴AO2+CO2=AC2
∴∠AOC=90°,
即AO⊥OC.
又AO⊥BD,BD∩OC=O,BD,OC?平面BCD
∴AO⊥平面BCD.
在△ACD中,CA=CD=2,AD=
2
,
∴AO=1,S△CDE=
1
2
×
3
4
×22
=
3
2
,
∴VE-ACD=VA-CDE=
1
3
•S△CDE•AO=
3
6
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與平面垂直的判定,棱錐的體積公式,熟練掌握空間直線與直線垂直與直線與平面垂直相互之間的轉(zhuǎn)化關(guān)系是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)的和Sn=2n2-n+1,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(1-x)6(1+x+x2)的展開(kāi)式中,x2的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn,已知a1=1,a2=2,a3=3,且(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),其中α,β為常數(shù).
(1)求α,β的值;
(2)證明數(shù)列{an}為等差數(shù)列;
(3)設(shè)bn=a1a2+a2a3+…+anan+1,求和
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為16,離心率為
4
3
,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(sinx+cosx)2+2cos2x
(1)求f(x)的最小正周期及最大值;
(2)求f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:4x-3y-12=0與x、y軸的交點(diǎn)分別為A,B,O為坐標(biāo)原點(diǎn),求△AOB內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin2xcos2
φ
2
+cos2xsinφ-sin2x(0<φ<π)圖象的一條對(duì)稱軸為x=
π
3

(Ⅰ)求φ的值;
(Ⅱ)若存在x0∈[-
π
3
,
π
6
]使得|f(x0)-m|≤
1
2
成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)已知函數(shù)g(x)=|f(
ωx
2
-
12
)|+|cosωx|在區(qū)間[0,1]上恰有50次取到最大值,求正數(shù)ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在二項(xiàng)式(
1
2
+2x)n的展開(kāi)式中,若第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案