【題目】在直角坐標系中,動圓與圓外切,且圓與直線相切,記動圓圓心的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)設(shè)過定點的動直線與曲線交于兩點,試問:在曲線上是否存在點(與兩點相異),當(dāng)直線的斜率存在時,直線的斜率之和為定值?若存在,求出點的坐標;若不存在,請說明理由.
【答案】(1);(2)答案見解析.
【解析】
(1)設(shè),圓的半徑為,由動圓與圓外切,可得,又動圓與直線相切,所以,兩式結(jié)合消去即可得結(jié)果;(2)設(shè)出的坐標,
直線方程為,聯(lián)立直線與拋物線方程消去可得關(guān)于的一元二次方程,由韋達定理、斜率公式可得,,化為,由可得結(jié)果.
(1)設(shè)P(x,y),圓P的半徑為r,
因為動圓P與圓Q:(x-2)2+y2=1外切,
所以,①
又動圓P與直線x=-1相切,所以r=x+1,②
由①②消去r得y2=8x,
所以曲線C的軌跡方程為y2=8x.
(2)假設(shè)存在曲線C上的點M滿足題設(shè)條件,不妨設(shè)M(x0,y0),A(x1,y1),B(x2,y2),
則,,,
,,
所以,③
顯然動直線l的斜率存在且非零,設(shè)l:x=ty-2,
聯(lián)立方程組,消去x得y2-8ty+16=0,
由Δ>0得t>1或t<-1,
所以y1+y2=8t,y1y2=16,且y1≠y2,
代入③式得,令(m為常數(shù)),
整理得,④
因為④式對任意t∈(-∞,-1)∪(1,+∞)恒成立,
所以,
所以或,即M(2,4)或M(2,-4),
即存在曲線C上的點M(2,4)或M(2,-4)滿足題意.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上存在不相等的實數(shù),使成立,求的取值范圍;
(Ⅲ)若函數(shù)有兩個不同的極值點,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人.”其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人.”在該問題中的1864人全部派遣到位需要的天數(shù)為( )
A. 9B. 16C. 18D. 20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱中,,,其中為棱上的中點,為棱上且位于點上方的動點.
(1)證明:平面;
(2)若平面與平面所成的銳二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點、,點是直角坐標平面上的動點,若將點的橫坐標保持不變、縱坐標擴大到倍后得到點,且滿足.
(1)求動點所在曲線的方程;
(2)過點作斜率為的直線交曲線于、兩點,且滿足,又點關(guān)于原點的對稱點為點,求點、的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,已知,,,是邊上一點,將沿折起,得到三棱錐。若該三棱錐的頂點在底面的射影在線段上,設(shè),則的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達線人數(shù)減少
B. 與2015年相比,2018年二本達線人數(shù)增加了倍
C. 2015年與2018年藝體達線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知城市周邊有兩個小鎮(zhèn)、,其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距,與夾角的正切值為2,為方便交通,現(xiàn)準備建設(shè)一條經(jīng)過城市的公路,使鄉(xiāng)鎮(zhèn)和分別位于的兩側(cè),過和建設(shè)兩條垂直的公路和,分別與公路交匯于、兩點,以為原點,所在直線為軸,建立如圖所示的平面直角坐標系.
(1)當(dāng)兩個交匯點、重合,試確定此時路段長度;
(2)當(dāng),計算此時兩個交匯點、到城市的距離之比;
(3)若要求兩個交匯點、的距離不超過,求正切值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若三次函數(shù)()的圖象上存在相互平行且距離為的兩條切線,則稱這兩條切線為一組“距離為的友好切線組”.已知,則函數(shù)的圖象上“距離為4的友好切線組”有( )組?
A. 0B. 1C. 2D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com