若函數(shù)所最小值為,則其最小正周期是

[  ]

A.  B.  C.  D.

答案:D
解析:


提示:

最小值為,因此


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若有下列命題:①|(zhì)x|2+|x|-2=0有四個(gè)實(shí)數(shù)解;②設(shè)a、b、c是實(shí)數(shù),若二次方程ax2+bx+c=0無(wú)實(shí)根,則ac≥0;③若x2-3x+2≠0,則x≠2,④若x∈R,則函數(shù)y=
x2+4
+
1
x2+4
的最小值為2.上述命題中是假命題的有
 

(寫出所有假命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校高一(下)6月月考數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列命題:
①函數(shù)的最小值為5;
②若直線y=kx+1與曲線y=|x|有兩個(gè)交點(diǎn),則k的取值范圍是-1≤k≤1;
③若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長(zhǎng)為2,則m的傾斜角可以是15°或75°
④設(shè)Sn是公差為d(d≠0)的無(wú)窮等差數(shù)列{an}的前n項(xiàng)和,若對(duì)任意n∈N*,均有Sn>0,則數(shù)列{Sn}是遞增數(shù)列
⑤設(shè)△ABC的內(nèi)角A.B.C所對(duì)的邊分別為a,b,c,若三邊的長(zhǎng)為連續(xù)的三個(gè)正整數(shù),且A>B>C,3b=20acosA則sinA:sinB:sinC為6:5:4
其中所有正確命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省泉州市2011-2012學(xué)年高三3月質(zhì)量檢查試題數(shù)學(xué)理(2012泉州質(zhì)檢) 題型:解答題

 本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.作

(1)選修4—2:矩陣與變換

若二階矩陣滿足.

(Ⅰ)求二階矩陣

(Ⅱ)把矩陣所對(duì)應(yīng)的變換作用在曲線上,求所得曲線的方程.

(2)選修4-4:坐標(biāo)系與參數(shù)方程

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為(t為非零常數(shù),為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,直線的方程為.

(Ⅰ)求曲線C的普通方程并說(shuō)明曲線的形狀;

(Ⅱ)是否存在實(shí)數(shù),使得直線與曲線C有兩個(gè)不同的公共點(diǎn)、,且(其中為坐標(biāo)原點(diǎn))?若存在,請(qǐng)求出;否則,請(qǐng)說(shuō)明理由.

(3)選修4—5:不等式選講

已知函數(shù)的最小值為,實(shí)數(shù)滿足.

(Ⅰ)求的值;

(Ⅱ)求證:

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O是正的中心,A點(diǎn)的坐標(biāo)為(0,2),動(dòng)點(diǎn)P(z,y)是內(nèi)的點(diǎn)(包括邊界)。若目標(biāo)函數(shù)的最大值為2,且此時(shí)的最優(yōu)解(x,y)確定的點(diǎn)P(x,y)是線段AC上的所有點(diǎn),則目標(biāo)函數(shù)的最小值為             。

查看答案和解析>>

同步練習(xí)冊(cè)答案