9.已知x,y之間的一組數(shù)據(jù)如右表,則y與x的回歸方程必經(jīng)過( 。
x0123
y1357
A.(1.5,4)B.(1,3)C.(2,2)D.(2,5)

分析 根據(jù)線性回歸方程必過樣本數(shù)據(jù)的中心點(diǎn),計(jì)算這組數(shù)據(jù)的樣本中心點(diǎn),即求出x和y的平均數(shù)即可.

解答 解:設(shè)y與x的線性回歸方程為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,且
$\overline{x}$=$\frac{1}{4}$×(0+1+2+3)=1.5,
$\overline{y}$=$\frac{1}{4}$×(1+3+5+7)=4,
所以線性回歸方程必過樣本中心點(diǎn)(1.5,4).
故選:A.

點(diǎn)評 本題考查了線性回歸方程過樣本中心點(diǎn)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=2lnx-x2,若方程f(x)+m=0在$[{\frac{1}{e},e}]$內(nèi)有兩個(gè)不等的實(shí)根,則實(shí)數(shù)m的取值范圍是$({1,2+\frac{1}{e^2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F(xiàn)分別是底邊AB,CD的中點(diǎn),把四邊形BEFC沿直線EF折起,使得平面BEFC⊥平面ADFE.若動點(diǎn)P∈平面ADFE,設(shè)PB,PC與平面ADFE所成的角分別為θ1,θ2(θ1,θ2均不為0).若θ12,則動點(diǎn)P的軌跡圍成的圖形的面積為( 。
A.$\frac{1}{4}{a^2}$B.$\frac{4}{9}{a^2}$C.$\frac{1}{4}π{a^2}$D.$\frac{4}{9}π{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)內(nèi)近似解的過程中得f(1)<0,f(1.5)>0,f(1.25)<0,f(2)>0則方程的根應(yīng)落在區(qū)間(  )
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知tanθ=3,求2sin2θ-3sinθcosθ-4cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知$\frac{sinα-4cosα}{2sinα+cosα}=2$.
(I)求tanα的值;
(II)若-π<α<0,求sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$\sqrt{x}$在x=1處的切線l方程是x-2y+1=0,以直線l與y軸的交點(diǎn)為焦點(diǎn)的拋物線標(biāo)準(zhǔn)方程是x2=2y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若在正六邊形ABCDEF中,O為其中心,則$\overrightarrow{FA}$+$\overrightarrow{AB}$+2$\overrightarrow{BO}$+$\overrightarrow{ED}$等于(  )
A.$\overrightarrow{FE}$B.$\overrightarrow{AC}$C.$\overrightarrow{DC}$D.$\overrightarrow{FC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=ax5+bx3+cx-8,且f(-2)=4,那么f(2)=( 。
A.-20B.10C.-4D.18

查看答案和解析>>

同步練習(xí)冊答案