精英家教網 > 高中數學 > 題目詳情

若函數有3個不同的零點,則實數a的取值范圍是(  )

A.(-2,2)B.[-2,2]C.(D.(1,+

A

解析解:由函數f(x)=x3-3x+a有三個不同的零點,
則函數f(x)有兩個極值點,極小值小于0,極大值大于0;
由f′(x)=3x2-3=3(x+1)(x-1)=0,解得x1=1,x2=-1,
所以函數f(x)的兩個極,x∈(-∞,-1),f′(x)>0,x∈(-1,1),f′(x)<0,x∈(1,+∞),f′(x)>0,
∴函數的極小值f(1)=a-2和極大值f(-1)=a+2.
因為函數f(x)=x3-3x+a有三個不同的零點,
所以a+2>0,a-2<0解之,得-2<a<2
故實數a的取值范圍是(-2,2).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•黃浦區(qū)一模)(理科)已知函數f(x)=
2
π
|x-π|,  (x>
π
2
)
sinx,   (0≤x≤
π
2
)
x2+x,   (x<0)
,M是非零常數,關于X的方程f(x)=m(m∈R)有且僅有三個不同的實數根,若b、a分別是三個根中的最小根和最大根,則β•sin(
π
3
+α)
=
1+
5
4
1+
5
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•泉州模擬)(1)選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對應的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.
(2)選修4-4:坐標系與參數方程
已知在直角坐標系xOy中,曲線C的參數方程為
x=2tcosθ
y=2sinθ
(t為非零常數,θ為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數t,使得直線l與曲線C有兩個不同的公共點A、B,且
OA
OB
=10
(其中O為坐標原點)?若存在,請求出;否則,請說明理由.
(3)選修4-5:不等式選講
已知函數f(x)=|x-2|+|x-4|的最小值為m,實數a,b,c,n,p,q滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的非零偶函數y=f(x)滿足:對任意的x,y∈[0,+∞)都有f(x+y)=f(x)•f(y)成立,且當x>0時,f(x)>1.
(1)若f(1)=2,求f(-4)的值;
(2)證明:函數f(x)在(0,+∞)上為單調遞增函數;
(3)若關于x的方程f(x)=f(
a(x-1)x+1
)
在(2,+∞)上有兩個不同的實根,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012年福建省泉州市高三3月質量檢查數學試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
若二階矩陣M滿足
(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對應的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.
(2)選修4-4:坐標系與參數方程
已知在直角坐標系xOy中,曲線C的參數方程為(t為非零常數,θ為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為
(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數t,使得直線l與曲線C有兩個不同的公共點A、B,且(其中O為坐標原點)?若存在,請求出;否則,請說明理由.
(3)選修4-5:不等式選講
已知函數f(x)=|x-2|+|x-4|的最小值為m,實數a,b,c,n,p,q滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數學 來源:福建省泉州市2011-2012學年高三3月質量檢查試題數學理(2012泉州質檢) 題型:解答題

 本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.作

(1)選修4—2:矩陣與變換

若二階矩陣滿足.

(Ⅰ)求二階矩陣;

(Ⅱ)把矩陣所對應的變換作用在曲線上,求所得曲線的方程.

(2)選修4-4:坐標系與參數方程

已知在直角坐標系中,曲線的參數方程為(t為非零常數,為參數),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;

(Ⅱ)是否存在實數,使得直線與曲線C有兩個不同的公共點、,且(其中為坐標原點)?若存在,請求出;否則,請說明理由.

(3)選修4—5:不等式選講

已知函數的最小值為,實數滿足.

(Ⅰ)求的值;

(Ⅱ)求證:

 

 

 

查看答案和解析>>

同步練習冊答案