如圖,已知三棱柱ABC-A1B1C1的各棱長均為2,P是BC的中點,側(cè)面ACC1A1⊥底面ABC,且側(cè)棱AA1與底面ABC所成的角為60°.
(Ⅰ)證明:直線A1C∥平面AB1P;
(Ⅱ)求直線AB1與平面ACC1A1所成角的正弦值.
分析:(Ⅰ)連接A1B交AB1于Q,則Q為A1B中點,連接PQ,證出PQ∥A1C后即可證出直線A1C∥平面AB1P;
(Ⅱ)取A1C1中點M,連B1M、AM,則B1M⊥A1C1,B1M⊥平面ACC1A1.∠B1AM為直線AB1與平面ACC1A1所成的角. 再得出∠A1AC為AA1與平面ABC所成的角,即∠A1AC=60°,在Rt△B1MA中求解即可.
解答:(Ⅰ)解:連接A1B交AB1于Q,
則Q為A1B中點,連接PQ,
∵P是BC的中點,∴PQ∥A1C.…(4分)
∵PQ?平面AB1P,A1C?平面AB1P,
∴A1C∥平面AB1P.     …(6分)
(Ⅱ)取A1C1中點M,連B1M、AM,
則B1M⊥A1C1
∵平面ACC1A1⊥平面ABC,
∴平面ACC1A1⊥平面A1B1C1
∴B1M⊥平面ACC1A1
∴∠B1AM為直線AB1與平面ACC1A1所成的角.                   …(9分)
在正△A1B1C1中,邊長為2,M是A1C1中點,∴B1M=
3
.  …(10分)
∵面ACC1A1⊥平面ABC,
∴∠A1AC為AA1與平面ABC所成的角,即∠A1AC=60°.               …(11分)
在菱形ACC1A1中,邊長為2,∠A1AC=60°,M是A1C1中點,
∴AM2=22+12-2×2×1×cos120°=7,∴AM=
7
.…(12分)
在Rt△B1MA中,B1M=
3
AM=
7
,從而AB1=
10

sin∠B1AM=
BM
AB
=
30
10

∴直線AB1與平面ACC1A1所成角的正弦值為
30
10
.                 …(14分)
點評:本題考查空間直線和平面平行關(guān)系的判定,線面角的定義及求解.考查空間想象能力、推理論證能力,計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分別是棱CC1,AB中點.
(Ⅰ)求證:CN⊥平面ABB1A1;
(Ⅱ)求證:CN∥平面AMB1;
(Ⅲ)求三棱錐B1-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點,N是BC的中點,點P在直線A1B1上,且滿足
A1P
A1B1

(1)證明:PN⊥AM;
(2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角最大值的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點,點P在直線A1B1上,且
A1P
A1B1

(Ⅰ)證明:無論λ取何值,總有AM⊥PN;
(Ⅱ)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值;
(Ⅲ)是否存在點P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
CG
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點.
(1)求證:BD⊥AC1;
(2)若AB=
2
,AA1=2
3
,求AC1與平面ABC所成的角.

查看答案和解析>>

同步練習冊答案