分析 (1)根據(jù)正弦定理化簡(jiǎn)已知的等式,利用余弦定理求出cosB的值,由內(nèi)角的范圍和特殊角的三角函數(shù)值,求出角B的值;
(2)由兩角和的正弦公式求出sin75°,由正弦定理求出求出邊a、c的值.
解答 解:(1)因?yàn)閍•sinA+c•sinC-$\sqrt{2}$a•sinC=b•sinB,
所以由正弦定理得,${a}^{2}+{c}^{2}-\sqrt{2}ac=^{2}$,即${a}^{2}+{c}^{2}-^{2}=\sqrt{2}ac$,
由余弦定理得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{2}}{2}$ …(3分)
因?yàn)?°<B180°,所以B=45° …(5分);
(2)因?yàn)閟inA=sin75°=sin(30°+45°)
=sin30°cos45°+cos30°sin45°
=$\frac{1}{2}×\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,…(6分)
所以由正弦定理得,$a=\frac{b•sinA}{sinB}$=$\frac{2×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{2}}{2}}$=$1+\sqrt{3}$ …(8分)
$c=\frac{b•sinC}{sinB}$=$\frac{2×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{6}$,則a=$1+\sqrt{3}$,c=$\sqrt{6}$ …(10分)
點(diǎn)評(píng) 本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查化簡(jiǎn)、計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n2+1 | B. | n+1 | C. | 1-n | D. | 3-n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{1}{2})$ | B. | $(-∞,\frac{1}{2})$ | C. | $(\frac{1}{2},+∞)$ | D. | $(-∞,0)∪(\frac{1}{2},+∞)$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com