已知P為拋物線(xiàn)y2=4x上的動(dòng)點(diǎn),過(guò)P分別作y軸與直線(xiàn)x-y+4=0的垂線(xiàn),垂足分別為A,B,則PA+PB的最小值為
 
分析:設(shè)P(
y2
4
,y),則 PA+PB=
y2
4
+
y2
4
2
-
y
2
+2
2
=
(
2
+1)y2
4
2
-
y
2
+2
2
,故
 當(dāng) y=
1
2
2
+1
2
2
=2
2
-2 時(shí),PA+PB 有最小值.
解答:解:設(shè)P(
y2
4
,y),則 PB=
|
y2
4
-y+4|
2
=
y2
4
2
-
y
2
+2
2

∴PA+PB=
y2
4
+
y2
4
2
-
y
2
+2
2
=
(
2
+1)y2
4
2
-
y
2
+2
2
,
故當(dāng) y=
1
2
2
+1
2
2
=2
2
-2 時(shí),PA+PB 有最小值等于
5
2
2
-1
,
故答案為:
5
2
2
-1
點(diǎn)評(píng):本題考查拋物線(xiàn)的標(biāo)準(zhǔn)方程,簡(jiǎn)單性質(zhì),以及二次函數(shù)的最小值的求法,判斷當(dāng) y=
1
2
2
+1
2
2
=2
2
-2 時(shí),PA+PB 有最小值,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線(xiàn)的準(zhǔn)線(xiàn)距離之和的最小值是(  )
A、2
5
-1
B、2
5
-2
C、
17
-1
D、
17
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4(x-1)上動(dòng)點(diǎn),PA⊥y軸交y于A,點(diǎn)B在y軸上,且B點(diǎn)分向量
OA
的比為1:2,求BP中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4x的焦點(diǎn),過(guò)P的直線(xiàn)l與拋物線(xiàn)交與A、B兩點(diǎn),若點(diǎn)Q在直線(xiàn)l上,且滿(mǎn)足AP•QB=AQ•PB,則點(diǎn)Q總在定直線(xiàn)x=-1上.試猜測(cè)如果點(diǎn)P為橢圓
x2
16
+
y2
9
=1
的左焦點(diǎn),過(guò)P的直線(xiàn)l與橢圓交與A、B兩點(diǎn),點(diǎn)Q在直線(xiàn)l上,且滿(mǎn)足AP•QB=AQ•PB,則點(diǎn)Q總在定直線(xiàn)
x=-
16
7
7
x=-
16
7
7
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線(xiàn)的準(zhǔn)線(xiàn)距離之和的最小值是
17
-1
17
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=2x上任一點(diǎn),則P到直線(xiàn)x-y+5=0距離的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案