分析 直接聯(lián)立方程組求解兩交點(diǎn)坐標(biāo),利用弦心距、弦長(zhǎng)、圓的半徑間的關(guān)系求得兩交點(diǎn)間的距離.
解答 解:聯(lián)立$\left\{\begin{array}{l}{x-y+2=0}\\{{x}^{2}+{y}^{2}=25}\end{array}\right.$,得2x2+4x-21=0,解得${x}_{1}=\frac{-2-\sqrt{46}}{2},{x}_{2}=\frac{-2+\sqrt{46}}{2}$.
當(dāng)${x}_{1}=\frac{-2-\sqrt{46}}{2}$時(shí),${y}_{1}=\frac{2-\sqrt{46}}{2}$;
當(dāng)${x}_{2}=\frac{-2+\sqrt{46}}{2}$時(shí),${y}_{2}=\frac{6-\sqrt{46}}{2}$.
∴直線x-y+2=0與x2+y2=25的兩個(gè)交點(diǎn)的坐標(biāo)為($\frac{-2-\sqrt{46}}{2},\frac{2-\sqrt{46}}{2}$),($\frac{-2+\sqrt{46}}{2},\frac{6-\sqrt{46}}{2}$);
∵圓x2+y2=25的圓心(0,0)到直線x-y+2=0距離為d=$\frac{|2|}{\sqrt{2}}=\sqrt{2}$,
圓的半徑r=5,
∴圓x2+y2=25被直線x-y+2=0所截半弦長(zhǎng)為$\sqrt{{5}^{2}-(\sqrt{2})^{2}}=\sqrt{23}$,
則直線x-y+2=0與x2+y2=25的兩個(gè)交點(diǎn)之間的距離為$2\sqrt{23}$.
點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,訓(xùn)練了方程組的解法,訓(xùn)練了求解直線被圓所截弦長(zhǎng)的方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com