一盒中裝有9張各寫有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(Ⅰ)求所取3張卡片上的數(shù)字完全相同的概率;
(Ⅱ)X表示所取3張卡片上的數(shù)字的中位數(shù),求X的分布列與數(shù)學(xué)期望.(注:若三個(gè)數(shù)字a,b,c滿足a≤b≤c,則稱b為這三個(gè)數(shù)的中位數(shù).)
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計(jì)算公式
專題:常規(guī)題型
分析:第一問是古典概型的問題,要先出基本事件的總數(shù)和所研究的事件包含的基本事件個(gè)數(shù),然后代入古典概型概率計(jì)算公式即可,相對(duì)簡(jiǎn)單些;
第二問應(yīng)先根據(jù)題意求出隨機(jī)變量X的所有可能取值,此處應(yīng)注意所取三張卡片可能來自于相同數(shù)字(如1或2)或不同數(shù)字(1和2、1和3、2和3三類)的卡片,因此應(yīng)按卡片上的數(shù)字相同與否進(jìn)行分類分析,然后計(jì)算出每個(gè)隨機(jī)變量所對(duì)應(yīng)事件的概率,最后將分布列以表格形式呈現(xiàn).
解答: 解:(Ⅰ)由古典概型的概率計(jì)算公式得所求概率為
         P=
C
3
4
+
C
3
3
C
3
9
=
5
84
,
(Ⅱ)由題意知X的所有可能取值為1,2,3,且
 P(X=1)=
C
2
4
C
1
5
+
C
3
4
C
3
9
=
17
42
,
P(X=2)=
 
C
1
3
 
C
1
4
 
C
1
2
+ C
2
3
 
C
1
6
C
3
3
 
C
3
9
=
43
84

 P(X=3)=
 
C
2
2
 
C
1
7
 
C
3
9
=
1
12
,
 所以X的分布列為:
X123
P
17
42
43
84
1
12
所以E(X)=
17
42
+2×
43
84
+3×
1
12
=
47
28
點(diǎn)評(píng):本題屬于中檔題,關(guān)鍵是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一問;第二問的只要是準(zhǔn)確記住了中位數(shù)的概念,應(yīng)該說完成此題基本沒有問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,0,1,2,3},B={x||x-1|<2},則A∩∁RB=( 。
A、{0,1,2}
B、{-1,3}
C、{1,2}
D、{-1,0,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:AC=AB1
(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,上頂點(diǎn)為B,已知|AB|=
3
2
|F1F2|.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)P為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段PB為直徑的圓經(jīng)過點(diǎn)F1,經(jīng)過原點(diǎn)O的直線l與該圓相切,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐A-BCD及其側(cè)視圖、俯視圖如圖所示,設(shè)M,N分別為線段AD,AB的中點(diǎn),P為線段BC上的點(diǎn),且MN⊥NP.

(1)證明:P是線段BC的中點(diǎn);
(2)求二面角A-NP-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別是A1C1,BC的中點(diǎn).
(Ⅰ)求證:平面ABE⊥B1BCC1
(Ⅱ)求證:C1F∥平面ABE;
(Ⅲ)求三棱錐E-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將連續(xù)正整數(shù)1,2,…,n(n∈N*)從小到大排列構(gòu)成一個(gè)數(shù)
.
123…n
,F(xiàn)(n)為這個(gè)數(shù)的位數(shù)(如n=12時(shí),此數(shù)為123456789101112,共15個(gè)數(shù)字,F(xiàn)(12)=15),現(xiàn)從這個(gè)數(shù)中隨機(jī)取一個(gè)數(shù)字,p(n)為恰好取到0的概率.
(1)求p(100);
(2)當(dāng)n≤2014時(shí),求F(n)的表達(dá)式;
(3)令g(n)為這個(gè)數(shù)中數(shù)字0的個(gè)數(shù),f(n)為這個(gè)數(shù)中數(shù)字9的個(gè)數(shù),h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求當(dāng)n∈S時(shí)p(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體的棱長(zhǎng)為1,C、D分別是兩條棱的中點(diǎn),A、B、M是頂點(diǎn),那么點(diǎn)M到截面ABCD的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,i2=-1,則復(fù)數(shù)
5i
2-i
在復(fù)平面上對(duì)應(yīng)點(diǎn)的坐標(biāo)是( 。
A、(-1,2)
B、(1,-2)
C、(1,2)
D、(-1,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案