已知圓柱的底面半徑為2,高為3,用一個與底面不平行的平面去截,若所截得的截面為橢圓,則橢圓的離心率的最大值為( )

A.1 B. C. D.

 

B

【解析】

試題分析:畫出圖形,結(jié)合圖形,得出當橢圓的長軸為AB=5,短軸CD=4時,離心率最大,求出即可.

【解析】
如圖所示,;

當橢圓的長軸AB==5,

短軸CD=2×2=4時,離心率最大,

最大值為e===

故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習卷(解析版) 題型:選擇題

(2013•黃埔區(qū)一模)若矩陣滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中至少有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為( )

A.48 B.72 C.168 D.312

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習卷(解析版) 題型:選擇題

在同一坐標系中,將曲線y=2sin3x變?yōu)榍y=sinx的伸縮變換是( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 3.3平面與圓錐面的截線練習卷(解析版) 題型:填空題

(2010•西城區(qū)一模)已知圓C的參數(shù)方程為(θ為參數(shù)),若P是圓C與y軸正半軸的交點,以原點為極點,x軸的正半軸為極軸建立極坐標系,求過點P的圓C的切線的極坐標方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習卷(解析版) 題型:填空題

工人師傅在如圖1的一塊矩形鐵皮的中間畫了一條曲線,并沿曲線剪開,將所得的兩部分卷成圓柱狀,如圖2,然后將其對接,可做成一個直角的“拐脖”,如圖3.對工人師傅所畫的曲線,有如下說法:

(1)是一段拋物線;

(2)是一段雙曲線;

(3)是一段正弦曲線;

(4)是一段余弦曲線;

(5)是一段圓。

則正確的說法序號是 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 3.1平行射影練習卷(解析版) 題型:填空題

一個等腰直角三角形在平面內(nèi)的正投影可能是 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習卷(解析版) 題型:填空題

(2014•南開區(qū)二模)如圖,AE是圓O的切線,A是切點,AD與OE垂直,垂足是D.割線EC交圓D于B,C,且∠BDC=62°,∠DBE=108°,則∠OEC= .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習卷(解析版) 題型:選擇題

如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點,且與AC交于另一點D.若∠A=70°,∠B=60°,則 的度數(shù)為何( )

A.50° B.60° C.100° D.120°

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習卷(解析版) 題型:選擇題

下列表述正確的是( )

①歸納推理是由特殊到一般的推理;

②演繹推理是由一般到特殊的推理;

③類比推理是由特殊到一般的推理;

④分析法是一種間接證明法;

⑤若z∈C,且|z+2﹣2i|=1,則|z﹣2﹣2i|的最小值是3.

A.①②③④ B.②③④ C.①②④⑤ D.①②⑤

 

查看答案和解析>>

同步練習冊答案