已知是數(shù)列{}的前n項(xiàng)和,并且=1,對(duì)任意正整數(shù)n,;設(shè)).

   (I)證明數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;

   (II)設(shè)的前n項(xiàng)和,求.

解析:(I)

兩式相減:

是以2為公比的等比數(shù)列,

 

(II)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)數(shù)列{an}的前n項(xiàng)和是Sn=
1
4
n2+
2
3
n+3

(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明{an}不是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}的前n 項(xiàng)和為Sn,且(p-1)Sn=p2-an,(n∈N*,p>0,p≠1),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
1
an+2
ln(
1
an+2
)
,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)當(dāng)p=
7
10
時(shí),數(shù)列{bn}中是否存在最小項(xiàng)?若存在說明是第幾項(xiàng),如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)列{an}的前n項(xiàng)和為Sn,且有Sn=
1
4
(an+1)2
,數(shù)列{bn}是首項(xiàng)為1,公比為
1
2
的等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若c=anbn,求:數(shù)列{cn}的前n項(xiàng)和Tn
(3)求證:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)列{an}的前n項(xiàng)和為Sn,且有Sn=
1
4
(an+1)2
,數(shù)列b1,b2-b1,b3-b2,…,bn-bn-1是首項(xiàng)為1,公比為
1
2
的等比數(shù)列.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若cn=an•(2-bn),求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)在(2)條件下,是否存在常數(shù)λ,使得數(shù)列(
Tn
an+2
)
為等比數(shù)列?若存在,試求出λ;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案