【題目】已知橢圓的離心率為,過(guò)定點(diǎn)的直線(xiàn)l與橢圓E相交于A,B兩點(diǎn),C為橢圓的左頂點(diǎn),當(dāng)直線(xiàn)l過(guò)點(diǎn)時(shí),(O為坐標(biāo)原點(diǎn))的面積為.
(1)求橢圓E的方程;
(2)求證:當(dāng)直線(xiàn)l不過(guò)C點(diǎn)時(shí),為定值.
【答案】(1);(2)為定值.
【解析】
(1)根據(jù)題意可得,設(shè),,由,得代入橢圓方程可得,進(jìn)而可得橢圓的方程;
(2)根據(jù)題意,設(shè),,直線(xiàn)的方程為,聯(lián)立方程,經(jīng)計(jì)算可得,即可得到為定值.
(1)由題意,設(shè),,直線(xiàn)的方程為,
由,即,
將點(diǎn)代入中,得,故,
又點(diǎn)在橢圓上,解得,
因橢圓的離心率,故,,
所以,橢圓的方程為.
(2)由題意,設(shè)直線(xiàn)的方程為,設(shè),,
聯(lián)立,消去得,
所以,,
當(dāng)直線(xiàn)不過(guò)時(shí),直線(xiàn)的斜率,直線(xiàn)的斜率,
所以,
即直線(xiàn)與直線(xiàn)垂直,故為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,是的中點(diǎn),是上一點(diǎn),且
(1)求證:平面;
(2)若求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著現(xiàn)代電子技術(shù)的迅猛發(fā)展,關(guān)于元件和系統(tǒng)可靠性的研究已發(fā)展成為一門(mén)新的學(xué)科——可靠性理論.在可靠性理論中,一個(gè)元件正常工作的概率稱(chēng)為該元件的可靠性.元件組成系統(tǒng),系統(tǒng)正常工作的概率稱(chēng)為該系統(tǒng)的可靠性.現(xiàn)有(,)種電子元件,每種2個(gè),每個(gè)元件的可靠性均為().當(dāng)某元件不能正常工作時(shí),該元件在電路中將形成斷路.現(xiàn)要用這個(gè)元件組成一個(gè)電路系統(tǒng),有如下兩種連接方案可供選擇,當(dāng)且僅當(dāng)從A到B的電路為通路狀態(tài)時(shí),系統(tǒng)正常工作.
(1)(i)分別寫(xiě)出按方案①和方案②建立的電路系統(tǒng)的可靠性、(用和表示);
(ii)比較與的大小,說(shuō)明哪種連接方案更穩(wěn)定可靠;
(2)設(shè),,已知按方案②建立的電路系統(tǒng)可以正常工作,記此時(shí)系統(tǒng)中損壞的元件個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面是邊長(zhǎng)為4的正方形,為正三角形,是的中點(diǎn),過(guò)的平面平行于平面,且平面與平面的交線(xiàn)為,與平面的交線(xiàn)為.
(1)在圖中作出四邊形(不必說(shuō)出作法和理由);
(2)若,求平面與平面形成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線(xiàn)與的公切線(xiàn)方程:
(2)若有兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),試寫(xiě)出方程根的個(gè)數(shù).(只需寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直角梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線(xiàn)段上是否存在點(diǎn),使得直線(xiàn)與平面所成角的正弦值為,若存在,求出線(xiàn)段的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別、,過(guò)的直線(xiàn)交雙曲線(xiàn)右支于,兩點(diǎn).的平分線(xiàn)交于,若,則雙曲線(xiàn)的離心率為( )
A.B.2C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前,我國(guó)老年人口比例不斷上升,造成日趨嚴(yán)峻的人口老齡化問(wèn)題.2019年10月12日,北京市老齡辦、市老齡協(xié)會(huì)聯(lián)合北京師范大學(xué)中國(guó)公益研究院發(fā)布《北京市老齡事業(yè)發(fā)展報(bào)告(2018)》,相關(guān)數(shù)據(jù)有如下圖表.規(guī)定年齡在15歲至59歲為“勞動(dòng)年齡”,具備勞動(dòng)力,60歲及以上年齡為“老年人”,據(jù)統(tǒng)計(jì),2018年底北京市每2.4名勞動(dòng)力撫養(yǎng)1名老年人.
(Ⅰ)請(qǐng)根據(jù)上述圖表計(jì)算北京市2018年戶(hù)籍總?cè)丝跀?shù)和北京市2018年的勞動(dòng)力數(shù);(保留兩位小數(shù))
(Ⅱ)從2014年起,北京市老齡人口與年份呈線(xiàn)性關(guān)系,比照2018年戶(hù)籍老年人人口年齡構(gòu)成,預(yù)計(jì)到2020年年底,北京市90以上老人達(dá)到多少人?(精確到1人)
(附:對(duì)于一組數(shù)據(jù)其回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)分別為:,.,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com