精英家教網 > 高中數學 > 題目詳情
精英家教網在邊長為a的等邊三角形ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=
a2
,這時二面角B-AD-C的大小為
 
分析:根據已知中AD⊥BC于D,易得沿AD折成二面角B-AD-C后,∠BDC即為二面角B-AD-C的平面角,解三角形BDC即可求出二面角B-AD-C的大小.
解答:解:∵AD⊥BC
∴沿AD折成二面角B-AD-C后,
AD⊥BD,AD⊥CD
故∠BDC即為二面角B-AD-C的平面角
又∵BD=CD=BC=
a
2
,
∴∠BDC=60°
故答案為:60°
點評:本題考查的知識點是二面角的平面角的求法,解答的關鍵是求出二面角的平面角,將問題轉化為一個解三角形問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網在三棱錐P-ABC中,△PAC和△PBC是邊長為
2
的等邊三角形,AB=2,O是AB中點.
(1)在棱PA上求一點M,使得OM∥平面PBC;
(2)求證:平面PAB⊥平面ABC;
(3)求二面角P-BC-A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知邊長為1的等邊△ABC,在線段AC上任取一點P(不與端點重合),將△ABP折起,使得平面BPC⊥平面ABP,則當三棱錐A-PBC的體積最大時,點A到面PBC的距離是
 
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣東)如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點,AD=AE,F是BC的中點,AF與DE交于點G,將△ABF沿AF折起,得到如圖2所示的三棱錐A-BCF,其中BC=
2
2

(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF;
(3)當AD=
2
3
時,求三棱錐F-DEG的體積VF-DEG

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•浙江模擬)已知直角梯形ABCD中,AD⊥DC,AD⊥AB,△CDE是邊長為2的等邊三角形,AB=5.沿CE將△BCE折起,使B至B′處,且B′C⊥DE;然后再將△ADE沿DE折起,使A至A′處,且面A′DE⊥面CDE,△B′CE和△A′DE在面CDE的同側.

(Ⅰ) 求證:B′C⊥平面CDE;
(Ⅱ) 求平面B′A′D與平面CDE所構成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點與短軸的兩個端點構成邊長為2的等邊三角形,設M(x1,y1),N(x2,y2),(x1≠x2)是橢圓上不同的兩點,且x1x2+4y1y2=0.
(1)求橢圓C的方程.
(2)求證:x12+x22=4.
(3)在x軸上是否存在一點P(t,0),使|
PM
|=|
PN
|
?若存在,求出t的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案