A. | 6 | B. | 7 | C. | 8 | D. | 9 |
分析 已知函數(shù)偶函數(shù)f(x)滿足f(x+2)=f(x),可知f(x)周期為2,且x∈[-1,1]時(shí),f(x)=1-x2,根據(jù)偶函數(shù)的性質(zhì)畫出f(x)的圖象,根據(jù)分段函數(shù)$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$,畫出g(x)的圖象,利用數(shù)形結(jié)合的方法求出函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)個(gè)數(shù)
解答 解:在R上的函數(shù)偶函數(shù)f(x)滿足f(x+2)=f(x),可知f(x)周期為2,
x∈[-1,1]時(shí),f(x)=1-x2,
故函數(shù)f(x)的圖象如下圖所示:
函數(shù)$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$的圖象如下圖所示:
函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個(gè)數(shù),即為f(x)=g(x)時(shí)的交點(diǎn),
由上圖可知f(x)與g(x)有8個(gè)交點(diǎn),
∴h(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個(gè)數(shù)為8個(gè),
故選:C
點(diǎn)評(píng) 此題主要考查偶函數(shù)的性質(zhì),以及零點(diǎn)定理的應(yīng)用,解題的過程中用到了數(shù)形結(jié)合的方法,這也是高考?嫉臒狳c(diǎn)問題,此題是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=1 | B. | a≥1 | C. | a≤1 | D. | 0<a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com