在中,角所對(duì)的邊為,且滿足
(Ⅰ)求角的值;
(Ⅱ)若且,求的取值范圍.
(1);(2).
解析試題分析:本題考查解三角形中的正弦定理、二倍角公式、二角和與差的正余弦公式及求三角函數(shù)最值等基礎(chǔ)知識(shí),考查基本運(yùn)算能力.第一問(wèn),先用倍角公式和兩角和與差的余弦公式將表達(dá)式變形,解方程,在三角形內(nèi)求角;第二問(wèn),利用正弦定理得到邊和角的關(guān)系代入到所求的式子中,利用兩角和與差的正弦公式展開(kāi)化簡(jiǎn)表達(dá)式,通過(guò)得到角的范圍,代入到表達(dá)式中求值域.
試題解析:(1)由已知得
, 4分
化簡(jiǎn)得,故. 6分
(2)由正弦定理,得,
故
8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/15/4/1wmlp4.png" style="vertical-align:middle;" />,所以,, 10分
所以. 12分
考點(diǎn):1.倍角公式;2.兩角和與差的余弦公式;3.正弦公式;4.求三角函數(shù)的值域.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某單位有、、三個(gè)工作點(diǎn),需要建立一個(gè)公共無(wú)線網(wǎng)絡(luò)發(fā)射點(diǎn),使得發(fā)射點(diǎn)到三個(gè)工作點(diǎn)的距離相等.已知這三個(gè)工作點(diǎn)之間的距離分別為,,.假定、、、四點(diǎn)在同一平面內(nèi).
(Ⅰ)求的大;
(Ⅱ)求點(diǎn)到直線的距
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),且的圖象的一個(gè)對(duì)稱中心到最近的對(duì)稱軸的距離為,
(Ⅰ)求的值
(Ⅱ)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,,函數(shù)的圖象與直線的相鄰兩個(gè)交點(diǎn)之間的距離為.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,分別為角所對(duì)的邊,向量, ,且垂直.
(Ⅰ)確定角的大。
(Ⅱ)若的平分線交于點(diǎn),且,設(shè),試確定關(guān)于的函數(shù)式,并求邊長(zhǎng)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com