【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若時, 恒成立,求的范圍.

【答案】(1)答案見解析;(2) .

【解析】試題分析:1)先求了函數(shù)f(x)的定義域和導(dǎo)數(shù),構(gòu)造函數(shù),g(x)=x2+2(1-a)x+1,由此利用導(dǎo)數(shù)性質(zhì)和分類討論思想能求出函數(shù)f(x)的單調(diào)區(qū)間.
(2)“當(dāng)x>0,且x≠1時,恒成立,等價于當(dāng)x>0,且x≠1時, 恒成立,構(gòu)造函數(shù)h(x)=f(x)-a,由此利用導(dǎo)數(shù)性質(zhì)和分類討論思想能求出實數(shù)a的取值范圍.

試題解析:(1)

當(dāng)時, ,

當(dāng)時, ,

當(dāng)時, 兩根為

, , , ,

, ,

綜上當(dāng)時, 區(qū)間為

當(dāng)時, 區(qū)間,

區(qū)間

(2)即證

整理得

即證時,

時,

,

當(dāng)時, ,

時,

時, 滿足題意

當(dāng)時,

時, 不合題意

綜上

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知城和城相距,現(xiàn)計劃以為直徑的半圓上選擇一點(不與點, 重合)建造垃圾處理廠.垃圾處理廠對城市的影響度與所選地點到城市的距離有關(guān),對城和城的總影響度為對城與城的影響度之和.記點到的距離為,建在處的垃圾處理廠對城和城的總影響度為.統(tǒng)計調(diào)查表明:垃圾處理廠對城的影響度與所選地點到城的距離的平方成反比例關(guān)系,比例系數(shù)為4;對城的影響度與所選地點到城的距離的平方成反比例關(guān)系,比例系數(shù)為.當(dāng)垃圾處理廠建在的中點時,對城和城的總影響度為0.065.

(1)將表示成的函數(shù).

(2)討論(1)中函數(shù)的單調(diào)性,并判斷在上是否存在一點,使建在此處的垃圾處理廠對城和城的總影響度最?若存在,求出該點到城的距離;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,點為雙曲線上一點,若的內(nèi)切圓半徑為1,且圓心到原點的距離為,則雙曲線的離心率是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點.

(1)求的長;

(2)在以為極點, 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點的極坐標(biāo)為,求點到線段中點的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線方程為,求的極值;

(2)若,是否存在,使的極值大于零?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了更好地了解設(shè)備改造前后與生產(chǎn)合格品的關(guān)系,隨機(jī)抽取了180件產(chǎn)品進(jìn)行分析,其中設(shè)備改造前的合格品有36件,不合格品有49件,設(shè)備改造后生產(chǎn)的合格品有65件,不合格品有30件.根據(jù)所給數(shù)據(jù):

⑴寫出列聯(lián)表;⑵判斷產(chǎn)品是否合格與設(shè)備改造是否有關(guān),說明理由.

附: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計出其中4天的價格如下表:

時間

第4天

第32天

第60天

第90天

價格(千元)

23

30

22

7

(1)寫出價格關(guān)于時間的函數(shù)關(guān)系式;(表示投放市場的第天);

(2)銷售量與時間的函數(shù)關(guān)系:,則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , .

(Ⅰ)證明: 平面;

(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), , )的一系列對應(yīng)最值如表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)遞增區(qū)間和對稱軸;

(3)若當(dāng)時,方程恰有兩個不同的解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案