5.指數(shù)函數(shù)y=ax在[1,2]上的最大值與最小值的和為6,則a=( 。
A.2B.3C.2或$\frac{3}{2}$D.$\frac{3}{2}$

分析 由于指數(shù)函數(shù)y=ax在[1,2]上是一個單調(diào)函數(shù),故函數(shù)在這個區(qū)間上的最值一定在端點處取到,由此知,求出兩個函數(shù)端點處的函數(shù)值,由它們的和是3建立關(guān)于參數(shù)a的方程解出答案,再選出正確選項

解答 解:由題意,指數(shù)函數(shù)y=ax在[1,2]上是單調(diào)函數(shù),故函數(shù)的最值在區(qū)間的兩個端點處取到,
又指數(shù)函數(shù)y=ax在[1,2]上的最大值與最小值的和為6,
∴a+a2=6,解得a=2,或a=-3(舍去)
故選:A.

點評 本題考查指數(shù)函數(shù)單調(diào)生的應(yīng)用,熟練掌握指數(shù)函數(shù)單調(diào)性,由性質(zhì)判斷出最值在何處取到是解題的關(guān)鍵,由指數(shù)函數(shù)的單調(diào)性判斷出函數(shù)最值在區(qū)間的兩個端點處取到是解題的難點,重點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{{x}^{3}+3,x≤0}\end{array}\right.$,對于方程f(2x2+x)=a.
(1)若a=3,方程實根的個數(shù)為6.
(2)若a∈(2,+∞),方程實根個數(shù)的最小值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a為實數(shù),函數(shù)f(x)=a•lnx+x2-4x.
(Ⅰ)令a=-6,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實數(shù)a,使得f(x)在x=1處取極值?證明你的結(jié)論;
(Ⅲ)若存在區(qū)間[2,3]⊆D,使得函數(shù)f(x)在D上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.實數(shù)x,y滿足圓的標準方程(x+1)2+(y-2)2=4
(Ⅰ)求$\frac{y}{x-4}$的最小值;
(Ⅱ)求定點(1,0)到圓上點的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知:函數(shù)f(x)=lg(1-x)+lg(p+x),其中p>-1
(1)求f(x)的定義域;
(2)若p=1,當x∈(-a,a]其中a∈(0,1),a是常數(shù)時,函數(shù)f(x)是否存在最小值,若存在,求出f(x)的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$(a>0,a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使xf(x)>0在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.用定義證明函數(shù)f(x)=3x-1在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=f(x)的定義域是[0,2],則函數(shù)y=$\frac{f(2x)}{\sqrt{1-x}}$+lgx的定義域是( 。
A.[0,1]B.[0,1)C.[0,1)∪(1,4]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解關(guān)于x的不等式:mx2-(2m+1)x+2>0(m∈R).

查看答案和解析>>

同步練習(xí)冊答案