【題目】定義在上的函數(shù)的導(dǎo)函數(shù)為,且滿足, ,當(dāng)時(shí)有恒成立,若非負(fù)實(shí)數(shù)、滿足, ,則的取值范圍為 .
【答案】
【解析】試題分析:由y=f′(x)圖象可知,當(dāng)x=0時(shí),f′(x)=0,
當(dāng)x∈(-∞,0)時(shí),f′(x)<0,f(x)單調(diào)遞減,
當(dāng)x∈(0,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增,
又∵a,b為非負(fù)實(shí)數(shù),
∴f(2a+b)≤1可化為f(2a+b)≤1=f(3),可得0≤2a+b≤3,
同理可得-2≤-a-2b≤0,即0≤a+2b≤2,
作出以及a≥0和b≥0所對應(yīng)的平面區(qū)域,
得到如圖的陰影部分區(qū)域,
解之得A(0,1)和B(1.5,0)
而等于可行域內(nèi)的點(diǎn)與P(-1,-2)連線的斜率,
結(jié)合圖形可知:kPB是最小值,kPA是最大值,
由斜率公式可得:kPA=3,kPB=,
故的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的方程是,圓的參數(shù)方程是(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別求直線與圓的極坐標(biāo)方程;
(2)射線:()與圓的交點(diǎn)為、兩點(diǎn),與直線交于點(diǎn),射線:與圓交于,兩點(diǎn),與直線交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-1《幾何證明選講》
已知A、B、C、D為圓O上的四點(diǎn),直線DE為圓O的切線,AC∥DE,AC與BD相交于H點(diǎn)
(1)求證:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下說法正確的是( )
A.零向量沒有方向
B.單位向量都相等
C.共線向量又叫平行向量
D.任何向量的模都是正實(shí)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測試,年部組織任課教師對這次考試進(jìn)行成績分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);
(Ⅱ)假設(shè)抽出學(xué)生的數(shù)學(xué)成績在段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個(gè)數(shù)字中任意抽取2個(gè)數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績的次數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率為 ,橢圓C與y軸交于A、B兩點(diǎn),|AB|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)P是橢圓C上的動(dòng)點(diǎn),且直線PA,PB與直線x=4分別交于M、N兩點(diǎn),是否存在點(diǎn)P,使得以MN為直徑的圓經(jīng)過點(diǎn)(2,0)?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com