20.使$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$>$\frac{995}{1994}$成立的最小的自然數(shù)是249.

分析 留言裂項(xiàng)求和求解左側(cè),然后求解不等式即可.

解答 解:$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$
左=$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$$[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}]$=$\frac{1}{2}(1-\frac{1}{2n+1})$,
使$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$>$\frac{995}{1994}$成立
可得8n+4>1994
n>248.
所以n的最小值是249.
故答案為:249.

點(diǎn)評(píng) 本題考查數(shù)列求和的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知狆:p:$\frac{1}{{x}-2}$≥1,q:|x-a|<1,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,3]B.[2,3]C.(2,3]D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知平面向量$\overrightarrow a=(λ,2)$,$\overrightarrow b=(-3,5)$,其中λ∈R.
(Ⅰ)若$\overrightarrow a$在$\overrightarrow b$方向上的投影為$\sqrt{34}$,求λ的值;
(Ⅱ)若$\overrightarrow a$與$\overrightarrow b$的夾角為銳角,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,m),若$\overrightarrow{a}$與$\overrightarrow$的夾角為鈍角,則m的取值范圍是m<1且m≠-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)$\frac{-1+3i}{1+i}$=(  )
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.對(duì)于直線l,m,平面α,m?α,則“l(fā)⊥m”是“l(fā)⊥α”成立的必要不充分條件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中選填一個(gè)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)=2|x-m|-1(m∈R)為偶函數(shù).記a=f(log${\;}_{\frac{1}{3}}$4),b=(log25),c=f(2m),則a,b,c的大小關(guān)系為(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足an+12=2Sn+n+4,a2-1,a3,a7恰為等比數(shù)列{bn}的前3項(xiàng).
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若${c_n}={(-1)^n}log_2^{\;}{b_n}-\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)x≥0,y≥0,且x+2y=$\frac{1}{2}$,求函數(shù)z=log${\;}_{\frac{1}{2}}$(8xy+4y2+1)的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案