3.設函數(shù)f(x)=eax+λlnx,其中a<0,e是自然對數(shù)的底數(shù)
(Ⅰ)若f(x)是(0,+∞)上的單調函數(shù),求λ的取值范圍;
(Ⅱ)若0<λ<$\frac{1}{e}$,證明:函數(shù)f(x)有兩個極值點.

分析 (Ⅰ)求出函數(shù)的導數(shù),通過討論λ的范圍,求出函數(shù)的單調區(qū)間,集合題意確定λ的范圍即可;
(Ⅱ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而判斷函數(shù)的極值點的個數(shù).

解答 解:(Ⅰ)f′(x)=aeax+$\frac{λ}{x}$=$\frac{a{xe}^{ax}+λ}{x}$,(x>0),
①若λ≤0,則f′(x)<0,則f(x)在(0,+∞)遞減,
②若λ>0,令g(x)=axeax+λ,其中a<0,x>0,
則g′(x)=aeax(1+ax),
令g′(x)=0,解得:x=-$\frac{1}{a}$,
故x∈(0,-$\frac{1}{a}$)時,g′(x)<0,g(x)遞減,
x∈(-$\frac{1}{a}$,+∞)時,g′(x)>0,g(x)遞增,
故x=-$\frac{1}{a}$時,g(x)取極小值也是最小值g(-$\frac{1}{a}$)=λ-$\frac{1}{e}$,
故λ-$\frac{1}{e}$≥0即λ≥$\frac{1}{e}$時,g(x)≥0,
此時f′(x)≥0,f(x)在(0,+∞)遞增,
綜上,所求λ的范圍是(-∞,0]∪[$\frac{1}{e}$,+∞);
(Ⅱ)f′(x)=aeax+$\frac{λ}{x}$=$\frac{a{xe}^{ax}+λ}{x}$,(x>0),
令g(x)=axeax+λ,其中a<0,x>0,
求導得:g′(x)=aeax(1+ax),
令g′(x)=0,解得:x=-$\frac{1}{a}$,
x∈(0,-$\frac{1}{a}$)時,g′(x)<0,g(x)遞減,
x∈(-$\frac{1}{a}$,+∞)時,g′(x)>0,g(x)遞增,
x=-$\frac{1}{a}$時,g(x)取得極小值,也是最小值g(-$\frac{1}{a}$)=λ-$\frac{1}{e}$,
∵0<λ<$\frac{1}{e}$,∴g(-$\frac{1}{a}$)=λ-$\frac{1}{e}$<0,又g(0)=λ>0,
∴g(-$\frac{1}{a}$)g(0)<0,
而x→+∞時,f′(x)→λ>0,
∴函數(shù)f(x)有兩個極值點.

點評 本題考查了函數(shù)的單調性、極值問題,考查導數(shù)的應用,是一道綜合題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.在我國明代數(shù)學家吳敬所著的《九章算術比類大全》中,有一道數(shù)學名題叫“寶塔裝燈”,內容為“遠望巍巍塔七層,紅燈點點倍加增;共燈三百八十一,請問頂層幾盞燈?”(“倍加增”指燈的數(shù)量從塔的頂層到底層按公比為2的等比數(shù)列遞增).根據(jù)此詩,可以得出塔的頂層和底層共有195盞燈.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列說法正確的序號是②.
①直線與平面所成角的范圍為(0°,90°)
 ②直線的傾斜角范圍為[0°,180°)
 ③y=x2,x∈N是偶函數(shù)
 ④兩直線平行,斜率相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在數(shù)列{an}中,${S_n}=\frac{2}{n+1}$
(1)求數(shù)列{an}的通項公式an
(2)設${b_n}=\frac{S_n}{n}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某公司現(xiàn)有職員160人,中級管理人員30人,高級管理人員10人,要從其中抽取20人進行體檢,如果采用分層抽樣的方法,則職員、中級管理人員和高級管理人員應該各抽取人數(shù)為(  )
A.8,15,7B.16,2,2C.16,3,1D.12,5,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知正四面體ABCD的棱長為a,點E,F(xiàn),H分別是BC,AD,AE的中點,則$\overrightarrow{AH}•\overrightarrow{AF}$的值為( 。
A.$\frac{1}{2}{a^2}$B.$\frac{1}{4}{a^2}$C.$\frac{1}{8}{a^2}$D.$\frac{{\sqrt{3}}}{8}{a^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某校舉辦安全法規(guī)知識競賽,從參賽的高一學生中抽出100人的成績作為樣本進行統(tǒng)計,并按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]分組,得到成績分布的頻率分布直方圖(如圖).
(1)若規(guī)定60分以上(包括60分)為合格,計算高一年級這次知識競賽的合格率;
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此,估計高一年級這次知識競賽的學生的平均成績.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)$y=2cos({2x+\frac{π}{6}})({x∈[{0\;,\;\;\frac{π}{2}}]})$的值域是[-2,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設集合A={x|-1<x≤2},Z為整數(shù)集,則集合A∩Z中元素的個數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案