精英家教網(wǎng)函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+…+f(2006)=
 
分析:由已知中的函數(shù)的圖象,我們易求出函數(shù)的解析式,進(jìn)而分析出函數(shù)的性質(zhì),根據(jù)函數(shù)是一個周期函數(shù),我們可以將f(1)+f(2)+…+f(2006)轉(zhuǎn)化為一個數(shù)列求和問題,然后利用分組求和法,即可得到答案.
解答:解:由已知中精英家教網(wǎng)函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象
我們易得f(x)=2sin
π
4
x
這是一個周期為8的周期函數(shù)
則f(1)+f(2)+…+f(2006)=f(1)+f(2)+…+f(6)=f(1)=
2

故答案為:
2
點評:本題考查的知識點是由y=Asin(ωx+φ)的部分圖象確定其解析式及數(shù)列求和,其中根據(jù)函數(shù)的圖象,求出函數(shù)的解析式,進(jìn)而分析出函數(shù)的性質(zhì)是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為
π
2
,
(1)求函數(shù)f(x)的解析式和當(dāng)x∈[0,π]時f(x)的單調(diào)減區(qū)間;
(2)設(shè)a∈(0,
π
2
),則f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=2cos2x的圖象,則只要將f(x)的圖象)向
平移
π
12
π
12
個單位長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值為4,最小正周期為
3

(1)求函數(shù)f(x)的解析式;
(2)設(shè)a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,若△EFG是邊長為2的正三角形,則f(1)=(  )
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步練習(xí)冊答案