【題目】如圖,在四棱錐中,底面是梯形,,,,側(cè)面底面

1)求證:平面平面;

2)若,且三棱錐的體積為,求側(cè)面的面積.

【答案】(1)證明見解析; (2).

【解析】

1)由梯形,設(shè),則,,運(yùn)用勾股定理和余弦定理,可得,由線面垂直的判定定理可得平面,運(yùn)用面面垂直的判定定理即可得證;

2)運(yùn)用面面垂直的性質(zhì)定理,以及三棱錐的體積公式,求得,運(yùn)用勾股定理和余弦定理,可得,,運(yùn)用三角形的面積公式,即可得到所求值.

1)在梯形中,,

設(shè),則,在直角三角形中,

可得,,

由余弦定理可得,

,由面底面,

所以平面

平面,

所以平面平面;

2)解:,且三棱錐的體積為,

中,可得

的邊上的高,

平面,可得

,

解得,

平面,可得,

,

,

在等腰三角形中,

上的高為,

的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201971日到3日,世界新能源汽車大會(huì)在海南博鰲召開,大會(huì)著眼于全球汽車產(chǎn)業(yè)的轉(zhuǎn)型升級(jí)和生態(tài)環(huán)境的持續(xù)改善.某汽車公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對(duì)100輛汽車進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠(yuǎn)里程)的測(cè)試.現(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如圖的頻率分布直方圖.

1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)根據(jù)大量的汽車測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航量程X近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問(wèn)中樣本標(biāo)準(zhǔn)差s的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率;

3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出玩游戲,送大獎(jiǎng)活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在勝利大本營(yíng),則可獲得購(gòu)車優(yōu)惠券.已知硬幣出現(xiàn)正,反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2……50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動(dòng)一次,若擲出正面,遙控車向前移動(dòng)一格(從k),若擲出反面,遙控車向前移動(dòng)兩格(從k),直到遙控車移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束.設(shè)遙控車移到第n格的概率為,試證明是等比數(shù)列,并解釋此方案能否成功吸引顧客購(gòu)買該款新能源汽車.

參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著一帶一路倡議的推進(jìn),中國(guó)與沿線國(guó)家旅游合作越來(lái)越密切,中國(guó)到一帶一路沿線國(guó)家的游客人也越來(lái)越多,如圖是20132018年中國(guó)到一帶一路沿線國(guó)家的游客人次情況,則下列說(shuō)法正確的是(

20132018年中國(guó)到一帶一路沿線國(guó)家的游客人次逐年增加

20132018年這6年中,2014年中國(guó)到一帶一路沿線國(guó)家的游客人次增幅最小

20162018年這3年中,中國(guó)到一帶一路沿線國(guó)家的游客人次每年的增幅基本持平

A.①②③B.②③C.①②D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線的參數(shù)方程為,(為參數(shù)).直線與曲線交于兩點(diǎn).

1)寫出曲線的直角坐標(biāo)方程和直線的普通方程.

2)設(shè),若成等比數(shù)列,求和的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市教育局為了監(jiān)控某校高一年級(jí)的素質(zhì)教育過(guò)程,從該校高一年級(jí)16個(gè)班隨機(jī)抽取了16個(gè)樣本成績(jī),制表如下:

抽取次序

1

2

3

4

5

6

7

8

測(cè)評(píng)成績(jī)

95

96

96

90

95

98

98

97

抽取次序

9

10

11

12

13

14

15

16

測(cè)評(píng)成績(jī)

97

95

96

98

99

96

99

96

為抽取的第個(gè)學(xué)生的素質(zhì)教育測(cè)評(píng)成績(jī),,經(jīng)計(jì)算得,,.以下計(jì)算精確到0.01.

1)設(shè)為抽取的16個(gè)樣本的成績(jī),用頻率估計(jì)概率,求的分布列、數(shù)學(xué)期望和標(biāo)準(zhǔn)方差;

2)在抽取的樣本成績(jī)中,如果出現(xiàn)了在之外的成績(jī),就認(rèn)為本學(xué)期的素質(zhì)教育過(guò)程可能出現(xiàn)了異常情況,需對(duì)本學(xué)期的素質(zhì)教學(xué)過(guò)程進(jìn)行反思,同時(shí)對(duì)下學(xué)期的素質(zhì)教育過(guò)程提出指導(dǎo)性的建議.從該校抽樣的結(jié)果來(lái)看,是否需對(duì)本學(xué)期的素質(zhì)教學(xué)過(guò)程進(jìn)行反思,同時(shí)對(duì)下學(xué)期的素質(zhì)教育過(guò)程提出指導(dǎo)性的建議?

3)列出不小于的所有樣本成績(jī),設(shè)列出的這些成績(jī)的中位數(shù)為,每次從列出的這些成績(jī)中隨機(jī)抽取1個(gè)成績(jī),有放回地連續(xù)抽取3次,求恰好有2次抽得的成績(jī)?yōu)?/span>的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問(wèn)卷滿意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱柱中,為棱的中點(diǎn).

1)求證:平面

2)若平面,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,面,面,,,,.

1)求的大。

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫算,是一種格子乘法,也是筆算乘法的一種,用以區(qū)別籌算與珠算,它由明代數(shù)學(xué)家吳敬在其撰寫的《九章算法比類大全》一書中提出,是從天元式的乘法演變而來(lái).例如計(jì)算,將被乘數(shù)89計(jì)入上行,乘數(shù)65計(jì)入右行.然后以乘數(shù)65的每位數(shù)字乘被乘數(shù)89的每位數(shù)字,將結(jié)果計(jì)入相應(yīng)的格子中,最后從右下方開始按斜行加起來(lái),滿十向上斜行進(jìn)一,如圖,即得5785.類比此法畫出的表格,若從表內(nèi)(表周邊數(shù)據(jù)不算在內(nèi))任取一數(shù),則恰取到奇數(shù)的概率是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案