【題目】從甲地到乙地沿某條公路行駛一共200公里,遇到紅燈個數(shù)的概率如下表所示:
紅燈個數(shù) | 0 | 1 | 2 | 3 | 4 | 5 | 6個及6個以上 |
概率 | 0.02 | 0.1 | 0.35 | 0.2 | 0.1 | 0.03 |
(1)求表中字母的值;
(2)求至少遇到4個紅燈的概率;
(3)求至多遇到5個紅燈的概率.
【答案】(1)0.2;(2)0.33;(3)0.97.
【解析】
(1)根據(jù)概率之和為1,由題中數(shù)據(jù),即可列出等式,求出的值;
(2)根據(jù)互斥事件的概率計算公式,由題中數(shù)據(jù),即可求出結(jié)果;
(3)根據(jù)對立事件的概率計算公式,即可求出結(jié)果.
(1)由題意可得,解得.
(2)設事件為遇到紅燈的個數(shù)為4,事件為遇到紅燈的個數(shù)為5,事件為遇到紅燈的個數(shù)為6個及以上,則事件“至少遇到4個紅燈”為,因為事件互斥,所以
,即至少遇到4個紅燈的概率為0.33.
(3)設事件為遇到6個及6個以上紅燈,則至多遇到5個紅燈為事件.
則.
科目:高中數(shù)學 來源: 題型:
【題目】某市組織高三全體學生參加計算機操作比賽,等級分為1至10分,隨機調(diào)閱了A、B兩所學校各60名學生的成績,得到樣本數(shù)據(jù)如下:
(1)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進行比較.
(2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+與雙曲線C2恒有兩個不同的交點A和B,且,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(5分)《九章算術(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )
A. 1升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個正方形花圃被分成5份.
(1)若給這5個部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍、綠4種顏色不同的花,求有多少種不同的種植方法?
(2)若向這5個部分放入7個不同的盆栽,要求每個部分都有盆栽,問有多少種不同的放法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C:(a>b>0)的左、右焦點分別為,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點M(0,-1),直線l經(jīng)過點N(2,1)且與橢圓C相交于A,B兩點(異于點M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校有微機臺,分別放在個房間,各房間開門鑰匙互不相同.某期培訓班有學員人(),每晚恰有人進機房實習操作,為保證每人一臺機,至少應準備多少把鑰匙分給這個學員,使得每晚不論哪個人進機房,都能用自己分到的鑰匙打開一間機房的門進去練習,并按分得鑰匙少的人先開門的原則,能保證每人恰可得到一個房間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,BC∥AD,AB⊥BC,∠ADC=45°,PA⊥平面ABCD,AB=AP=1,AD=3.
(1)求異面直線PB與CD所成角的大。
(2)求點D到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,BC邊上的高所在直線的方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0.若點B的坐標為(1,2),求點A和點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com