設(shè)棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M,N分別為CD,CC1中點(diǎn),則直線A1M和DN所成的角為
 
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:建立空間直角坐標(biāo)系,利用向量數(shù)量積垂直即可得出異面直線所成的夾角.
解答: 解:建立空間直角坐標(biāo)系,如圖所示,
A1(1,0,1),M(0,
1
2
,0)
N(0,1,
1
2
)

A1M
=(-1,
1
2
,-1)
,
DN
=(0,1,
1
2
)

A1M
DN
=
1
2
-
1
2
=0,
A1M
DN

∴直線A1M和DN所成的角為
π
2

故答案為:
π
2
點(diǎn)評(píng):本題考查了通過建立空間直角坐標(biāo)系利用向量數(shù)量積垂直得出異面直線所成的夾角的方法,考查了空間想象能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+
3
y+m=0與圓x2+y2=8交于不同的兩點(diǎn)A、B.O是坐標(biāo)原點(diǎn),|
OA
+
OB
|≥|
AB
|,那么實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C1的中點(diǎn)在原點(diǎn)O,長(zhǎng)軸左、右端點(diǎn)M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D.若存在直線l,使得BO∥AN,求橢圓離心率的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(3,-4)為角α終邊上一點(diǎn),則sinθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是線段AB上的動(dòng)點(diǎn),若
OP
=x
OA
+y
OB
,則
1
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為BC邊上的一點(diǎn),且DC=2BD,E為AD的中點(diǎn),過點(diǎn)E的直線分別交AB、AC于點(diǎn)M、N,設(shè)
AM
=x
AB
AN
=y
AC
,則
1
x
+
1
2y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga
x2+1
+x)+
2
2x+1
+2 (a>0,a≠1),若f(1)=2,則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,則目標(biāo)函數(shù)z=2x-3y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線λ:2x-y+3=0與圓C:x2+(y-1)2=5的位置關(guān)系是( 。
A、相交B、相切C、相離D、不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案