(12分)已知函數(shù)).

①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

②設(shè)的兩個(gè)極值點(diǎn),的一個(gè)零點(diǎn).證明:存在實(shí)數(shù),使得按某種順序排列后構(gòu)成等差數(shù)列,并求.

 

【答案】

.②存在實(shí)數(shù)滿(mǎn)足題意,且.

【解析】

試題分析:(1)將a,b的值代入后對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義即函數(shù)在某點(diǎn)的導(dǎo)數(shù)值等于該點(diǎn)的切線的斜率,可得答案.

(2)對(duì)函數(shù)f(x)求導(dǎo),令導(dǎo)函數(shù)等于0解出x的值,然后根據(jù)x3是f(x)的一個(gè)零點(diǎn)可得到x3=b,然后根據(jù)等差數(shù)列的性質(zhì)可得到答案.

解:①當(dāng)時(shí),,故,又

  所以點(diǎn)處的切線方程為:.

②證明:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810172773289469/SYS201212181018533891823444_DA.files/image010.png">=,由于,故,

所以的兩個(gè)極值點(diǎn)為,不妨設(shè),,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810172773289469/SYS201212181018533891823444_DA.files/image017.png">,且的一個(gè)零點(diǎn),故,

由于,故,故,又,

=,此時(shí)依次成等差數(shù)列,

所以存在實(shí)數(shù)滿(mǎn)足題意,且.

考點(diǎn):本題主要考查函數(shù)的極值概念、導(dǎo)數(shù)運(yùn)算法則、切線方程、導(dǎo)線應(yīng)用、等差數(shù)列等基礎(chǔ)知識(shí),同時(shí)考查抽象概括、推理論證能力和創(chuàng)新意識(shí).

點(diǎn)評(píng):對(duì)于導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用問(wèn)題,對(duì)于導(dǎo)數(shù)的幾何意義是考試的必考的一個(gè)知識(shí)點(diǎn),要引起重視,同時(shí)對(duì)于極值點(diǎn)的導(dǎo)數(shù)為零是該點(diǎn)為極值點(diǎn)的必要不充分條件。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1 ( 當(dāng)x為有理數(shù)時(shí))
0(當(dāng)x為無(wú)理數(shù)時(shí))
,給出下列關(guān)于f(x)的性質(zhì):
①f(x)是周期函數(shù),3是它的一個(gè)周期;②f(x)是偶函數(shù);③方程f(x)=cosx有有理根;④方程f[f(x)]=f(x)與方程f(x)=1的解集相同
正確的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=logax,當(dāng)x>2 時(shí)恒有|y|>1,則a的取值范圍是
[
1
2
,1)∪(1,2]
[
1
2
,1)∪(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(n)=
n2   (當(dāng)n為奇數(shù)時(shí))
-n2  (當(dāng)n為偶數(shù)時(shí))
,且an=f(n)+f(n+1),則a1+a2+a3+…+a2012等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=log3x,當(dāng)x>1時(shí),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

(Ⅰ)當(dāng)a=3時(shí),求fx)的零點(diǎn);

(Ⅱ)求函數(shù)yf (x)在區(qū)間 [ 1,2 ] 上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案