為拋物線的焦點(diǎn),為拋物線上三點(diǎn).為坐標(biāo)原點(diǎn),若的重心,的面積分別為3 ,則的值為: (    )  

A. 3             B. 4              C. 6              D. 9          

 

【答案】

A

【解析】

試題分析:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313055655839813/SYS201301131306317302312574_DA.files/image002.png">為拋物線上三點(diǎn),所以為拋物線的焦點(diǎn),所以,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313055655839813/SYS201301131306317302312574_DA.files/image005.png">是的重心,所以,即

所以

考點(diǎn):本小題主要考查拋物線的標(biāo)準(zhǔn)方程、拋物線上點(diǎn)的性質(zhì)、重心坐標(biāo)公式及三角形面積公式的應(yīng)用,考查學(xué)生綜合分析問題、解決問題的能力,考查學(xué)生的運(yùn)算求解能力.

點(diǎn)評:截距此類問題時(shí),要注意“設(shè)而不求”思想的應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

已知橢圓的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為、,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個(gè)交點(diǎn)為.

(1)當(dāng)時(shí),求橢圓的方程;

(2)在(1)的條件下,直線過焦點(diǎn),與拋物線交于兩點(diǎn),若弦長等于的周長,求直線的方程;

(3)由拋物線弧和橢圓弧

)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)為直角頂點(diǎn),另兩個(gè)頂點(diǎn)落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線方程為

⑴直線過拋物線的焦點(diǎn)F,且垂直于x軸,與拋物線交于

A、B兩點(diǎn),求AB的長度.

⑵直線過拋物線的焦點(diǎn),且傾斜角為,直線與拋

物線相交于C、D兩點(diǎn),O為原點(diǎn).求△OCD的面積.

查看答案和解析>>

同步練習(xí)冊答案