7.若α∈(0,$\frac{π}{2}$),且cos2α+cos($\frac{π}{2}$+2α)=$\frac{3}{10}$,則tanα( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

分析 由條件利用誘導公式、二倍角公式,同角三角函數(shù)的基本關系求得3tan2α+20tanα-7=0,解方程求得tanα的值.

解答 解:若$α∈(0,\frac{π}{2})$,且${cos^2}α+cos(\frac{π}{2}+2α)=\frac{3}{10}$,則cos2α-sin2α=$\frac{3}{10}$(cos2α+sin2α),
∴$\frac{7}{10}$cos2α-$\frac{3}{10}$sin2α-2sinαcosα=0,即 3tan2α+20tanα-7=0.
求得tanα=$\frac{1}{3}$,或 tanα=-7(舍去),
故選:B.

點評 本題主要考查同角三角函數(shù)的基本關系,誘導公式、二倍角公式的應用,以及三角函數(shù)在各個象限中的符號,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{3x-y-2≥0}\\{x+y-6≥0}\end{array}\right.$,則目標函數(shù)z=2x+y(  )
A.有最小值3,最大值9B.有最小值9,無最大值
C.有最小值8,無最大值D.有最小值3,最大值8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,則輸出的結果為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調遞增的是( 。
A.y=|x+2|B.y=|x|+2C.y=-x2+2D.$y={({\frac{1}{2}})^{|x|}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x≥1\\ f({2x}),0<x<1.\end{array}\right.$則$f[{{{({\frac{1}{2}})}^{\frac{1}{2}}}}]$=( 。
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,其左頂點到上頂點的距離為$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l是過橢圓右焦點F且斜率為k的直線,已知直線l交橢圓于M,N兩點,若橢圓上存在一點P,滿足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OP}$,求當$|{\overrightarrow{OP}}|=2|k|$時,k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.下表記錄了某學生進入高三以來各次數(shù)學考試的成績
考試第次123456789101112
成績(分)657885878899909493102105116
將第1次到第12次的考試成績依次記為a1,a2,…,a12.圖2是統(tǒng)計上表中成績在一定范圍內考試次數(shù)的一個算法流程圖.那么算法流程圖輸出的結果是7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=x3+mx2-m2x+2,g(x)=alnx,a、m∈R.
(1)若m<0時,試求函數(shù)y=f(x)的單調遞減區(qū)間;
(2)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)$f(x)={(\sqrt{x}+\sqrt{2})^2}$,(x≥0),又數(shù)列{an}中,an>0,a1=2,該數(shù)列的前n項和記為Sn,對所有大于1的自然數(shù)n都有Sn=f(Sn-1).
(Ⅰ)求{an}的通項公式;
(Ⅱ)記bn=$\frac{{{a_{n+1}}^2+{a_n}^2}}{{2{a_{n+1}}{a_n}}}$,{bn}其前n項和為Tn,證明:Tn<n+1.

查看答案和解析>>

同步練習冊答案