6.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x>0時,$f(x)={x^2}+\frac{2}{x}$,則x<0時,f(x)=x2-$\frac{2}{x}$.

分析 當(dāng)x<0時可得-x>0,整體代入已知解析式結(jié)合函數(shù)的奇偶性可得.

解答 解:當(dāng)x<0時可得-x>0,
∵當(dāng)x>0時,$f(x)={x^2}+\frac{2}{x}$,
∴f(-x)=(-x)2+$\frac{2}{-x}$=x2-$\frac{2}{x}$,
又函數(shù)為定義在R上的偶函數(shù),
∴當(dāng)x<0時f(x)=x2-$\frac{2}{x}$,
故答案為:x2-$\frac{2}{x}$.

點評 本題考查函數(shù)解析式的求解,涉及函數(shù)的奇偶性和整體的思想,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線y2=4x,作斜率為1的直線l交拋物線于A,B兩點,交x軸于點M,弦AB的中點為P
(1)若M(2,0),求以線段AB為直徑的圓的方程;
(2)設(shè)M(m,0),若點P滿足$\frac{1}{{|{AM}|}}+\frac{1}{{|{BM}|}}=\frac{1}{{|{PM}|}}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.高一某班共有學(xué)生43人,據(jù)統(tǒng)計原來每人每年用于購買飲料的平均支出是120元.若該班全體學(xué)生改飲某品牌的桶裝純凈水,經(jīng)測算和市場調(diào)查,其年總費用由兩部分組成,一部分是購買純凈水的費用,另一部分是其它費用260元,其中,純凈水的銷售價x(元/桶)與年購買總量y(桶)之間滿足如圖直線所示關(guān)系.
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)的定義域;
(2)若該班每年需要純凈水360桶,請你根據(jù)提供的信息比較,該班全體學(xué)生改飲桶裝純凈水的年總費用與該班全體學(xué)生購買飲料的年總費用,哪一個更少?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a=tan$\frac{8π}{7}$,b=tan$\frac{π}{8}$,則a與b的大小關(guān)系是b<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知冪函數(shù)f(x)=xα的圖象過點(8,4),則α=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f (x)=$\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若函y=f (x)十f(2-x)-b,b∈R恰4個零,則b的取值范圍是( 。
A.($\frac{7}{4}$,+∞)B.(一∞,$\frac{7}{4}$)C.(0,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}$且f(x+2)=f(x).若方程f(x)-kx-2=0有三個不相等的實數(shù)根,則實數(shù)k的取值范圍是( 。
A.$(\frac{1}{3},1)$B.$(-\frac{1}{3},-\frac{1}{4})$C.$(\frac{1}{3},1)∪(-1,-\frac{1}{3})$D.$(-\frac{1}{3},-\frac{1}{4})∪(\frac{1}{4},\frac{1}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.角α的終邊經(jīng)過點P(-2sin60°,2cos30°),則sinα=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=\root{3}{x}-{(\frac{1}{2})^x}$,那么在下列區(qū)間中含有函數(shù)f(x)零點的是(  )
A.$(0,\frac{1}{3})$B.$(\frac{1}{3},\frac{1}{2})$C.$(\frac{1}{2},\frac{2}{3})$D.$(\frac{2}{3},1)$

查看答案和解析>>

同步練習(xí)冊答案