【題目】某高校學(xué)生社團為了解“大數(shù)據(jù)時代”下大學(xué)生就業(yè)情況的滿意度,對20名學(xué)生進行問卷計分調(diào)查(滿分100分),得到如圖所示的莖葉圖:

(1)計算男生打分的平均分,觀察莖葉圖,評價男女生打分的分散程度;

(2)從打分在80分以上的同學(xué)隨機抽3人,求被抽到的女生人數(shù)的分布列和數(shù)學(xué)期望.

【答案】(1)69,女生打分比較集中,男生打分比較分散;(2)分布列見解析,期望為

【解析】試題分析:

(1)結(jié)合莖葉圖計算可得男生打的平均分為,觀察莖葉圖可知女生打分比較集中,男生打分比較分散;

(2)由題意可得的可能取值為1,2,3,結(jié)合超幾何概型的概率公式即可求得分布列,然后計算可得數(shù)學(xué)期望為.

試題解析:

(1)男生打的平均分為:

由莖葉圖知,女生打分比較集中,男生打分比較分散;

(2)因為打分在80分以上的有3女2男,

的可能取值為1,2,3,

, ,

的分布列為:

1

2

3

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)當(dāng)曲線在點處的切線與直線垂直時,求的值;

(Ⅱ)若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|loga|x﹣1||(a>0,a≠1),若x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),則 + + + =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,PA⊥平面ABCD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b.

(1)求證:平面PBD⊥平面PAC;
(2)設(shè)AC與BD交于點O,M為OC中點,若二面角O﹣PM﹣D的正切值為2 ,求a:b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是(
A.y=
B.y=x2
C.y=x3
D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)計算f(1)+f(0)的值;
(2)計算f(x)+f(1﹣x)的值;
(3)若關(guān)于x的不等式:f[23x﹣2x+m(2x﹣2x)+ ]< 在區(qū)間[1,2]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A={x|x2+(p+2)x+1=0,x∈R},若A∩R+=,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x+ 有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在 上是減函數(shù),在 上是增函數(shù).
(1)已知f(x)= ,x∈[﹣1,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x)=﹣x﹣2a,若對任意x1∈[﹣1,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列三個命題
①若“p或q”為假命題,則p,q均為真命題;
②命題“若x≥2且y≥3,則x+y≥5”的逆否命題為假命題;
③在△ABC中,“A>45°”是“sinA> ”的充要條件,
其中正確的命題個數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習(xí)冊答案