已知橢圓上任一點P,由點P向x軸作垂線段PQ,垂足為Q,點M在PQ上,且,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于x軸的直線上一動點,滿足(O為原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.
【答案】分析:(1)設M(x,y)是所求曲線上的任意一點,然后得出的坐標代入方程,化簡即可求出軌跡C的方程.
(2)設出直線l的方程,以及與橢圓的交點坐標,將直線方程代入已知C的方程,聯(lián)立并化簡,根據(jù)根的判別式計算
解答:解:(1)設M(x,y)是曲線C上任一點,因為PM⊥x軸,,所以點P的坐標為(x,3y) (2分)
點P在橢圓上,所以,因此曲線C的方程是…(5分)
(2)當直線l的斜率不存在時,顯然不滿足條件
所以設直線l的方程為y=kx-2與橢圓交于A(x1,y1),B(x2,y2),N點所在直線方程為,…(6分)
,…(8分)
因為,所以四邊形OANB為平行四邊形,…(10分)
假設存在矩形OANB,則,即x1x2+y1y2=x1x2+k2x1x2-2k(x1+x2)+4=(1+k2)x1x2-2k(x1+x2)+4=0,
所以,…(12分)
設N(x,y),由,得,
即N點在直線,所以存在四邊形OANB為矩形,直線l的方程為y=±2x-2…(15分)
點評:本題考查圓錐曲線的綜合運用以及軌跡方程的應用,通過對圓錐曲線知識的綜合運用,考查學生的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011-2012學年青海省片區(qū)高三年級大聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

已知橢圓上任一點P,由點P向x軸作垂線段PQ,垂足為Q,點M在PQ上,且,點M的軌跡為C.

(Ⅰ)求曲線C的方程;

(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于軸的直線上一動點,滿足(O為原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓數(shù)學公式上任一點P到兩個焦點的距離的和為數(shù)學公式,P與橢圓長軸兩頂點連線的斜率之積為數(shù)學公式.設直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(Ⅰ)若數(shù)學公式(O為坐標原點),求|y1-y2|的值;
(Ⅱ)當直線l與兩坐標軸都不垂直時,在x軸上是否總存在點Q,使得直線QA、QB的傾斜  角互為補角?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓上任一點P,由點P向x軸作垂線段PQ,垂足為Q,點M在PQ上,且,點M的軌跡為C.

   (1)求曲線C的方程;

   (2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且以 為方向向量的直線上一動點,滿足(O為原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年云南省玉溪一中高三(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓上任一點P,由點P向x軸作垂線段PQ,垂足為Q,點M在PQ上,且,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于x軸的直線上一動點,滿足(O為原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年云南省玉溪一中高三(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓上任一點P,由點P向x軸作垂線段PQ,垂足為Q,點M在PQ上,且,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于x軸的直線上一動點,滿足(O為原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

同步練習冊答案