16.下列函數(shù)中,能用二分法求零點(diǎn)的是( 。
A.f(x)=log2xB.f(x)=-x2C.f(x)=x2D.f(x)=|x|

分析 求出函數(shù)的值域,即可判斷選項(xiàng)的正誤;

解答 解:f(x)=log2x是單調(diào)函數(shù),y∈R,能用二分法求零點(diǎn).
f(x)=-x2不是單調(diào)函數(shù),y≤0,不能用二分法求零點(diǎn).
f(x)=x2不是單調(diào)函數(shù),y≥0,不能用二分法求零點(diǎn).
f(x)=|x|不是單調(diào)函數(shù),y≥0,不能用二分法求零點(diǎn).
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)判斷,二分法的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)曲線f(x)=ax+ex在點(diǎn)(0,1)處的切線與直線x+y-1=0垂直,則實(shí)數(shù)a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.與雙曲線4y2-x2=1共漸近線,且過點(diǎn)(4,$\sqrt{3}$)的雙曲線的標(biāo)準(zhǔn)方程為 ( 。
A.y2-$\frac{x^2}{4}$=1B.x2-$\frac{y^2}{4}$=1C.$\frac{y^2}{4}-{x^2}$=1D.$\frac{x^2}{4}-{y^2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知冪函數(shù)f(x)=(t3-t+1)x${\;}^{2+2t-{t}^{2}}$是奇函數(shù),且在(0,+∞)上是增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)g(x)=f(x)-4$\sqrt{f(x)}$,x∈[1,4],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程sin2x+sin x-1-m=0在實(shí)數(shù)集上有解,則實(shí)數(shù)m的范圍為( 。
A.$[-\frac{5}{4},+∞)$B.$[-\frac{5}{4},1]$C.$(-∞,-\frac{5}{4}]$D.[-1,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|3<x<6},B={x|2<x<9},
(Ⅰ)求A∩B,(∁RA)∪(∁RB),
(Ⅱ)已知C={x|a<x<a+1},若B∪C=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)P(x,y)是曲線$\sqrt{\frac{{x}^{2}}{25}}$+$\sqrt{\frac{{y}^{2}}{16}}$=1上的點(diǎn),F(xiàn)1(-3,0),F(xiàn)2(3,0),則必有( 。
A.|PF1|+|PF2|≤10B.|PF1|+|PF2|<10C.|PF1|+|PF2|≥10D.|PF1|+|PF2|>10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)點(diǎn)O為△ABC的內(nèi)部,點(diǎn)D,E分別為邊AC,BC的中點(diǎn),且$|{3\overrightarrow{OD}+2\overrightarrow{DE}}|=3$,則$|{\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}}|$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列命題:
(1)“若x>2,則x>0”的否命題
(2“?a∈(0,+∞),函數(shù)y=ax在定義域內(nèi)單調(diào)遞增”的否定
(3)“π是函數(shù)y=sinx的一個(gè)周期”或“2π是函數(shù)y=sin2x的一個(gè)周期”
(4)“x2+y2=0”是“xy=0”的必要條件
其中真命題的序號(hào)是(2)(3).

查看答案和解析>>

同步練習(xí)冊答案