定義兩種運(yùn)算:a⊕b=ab,a?b=a2+b2,則函數(shù)的奇偶性為   
【答案】分析:根據(jù)新運(yùn)算,確定函數(shù)的解析式,再利用奇偶性的定義判斷函數(shù)的奇偶性即可.
解答:解:∵a⊕b=ab,a?b=a2+b2,
∴函數(shù)=
∴f(-x)=-=-f(x)
∴函數(shù)f(x)是奇函數(shù)
故答案為:奇函數(shù)
點(diǎn)評(píng):本題考查新運(yùn)算,考查函數(shù)的奇偶性,解題的關(guān)鍵是確定函數(shù)的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義兩種運(yùn)算:a⊕b=a2+b2,a⊙b=ab(a,b∈R),則函數(shù)f(x)=
2⊙x
(x⊕2)-2
是(  )
A、奇函數(shù)
B、偶函數(shù)
C、既是奇數(shù)又是偶函數(shù)
D、既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義兩種運(yùn)算:a⊕b=ab,a?b=a2+b2,則函數(shù)f(x)=
1⊕x
(x?1)-2
的奇偶性為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義兩種運(yùn)算:a⊕b=ab,a?b=a2+b2,則函數(shù)f(x)=
2⊕x(x?2)-2
的奇偶性為
奇函數(shù)
奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義兩種運(yùn)算:a⊕b=
a2-b2
,a*b=|a-b|,則函數(shù)f(x)=
1⊕x
(x*1)-1
的奇偶性為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義兩種運(yùn)算:a⊕b=
a2-b2
,a?b=
(a-b)2
,則函數(shù)f(x)=
2⊕x
(x?2)-2
的圖象關(guān)于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案