設(shè)函數(shù)f(x)=ax3+bx2+cx,若1和-1是函數(shù)f(x)的兩個(gè)零點(diǎn),x1和x2是f(x)的兩個(gè)極值點(diǎn),則x1•x2=
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:由1和-1是函數(shù)f(x)的兩個(gè)零點(diǎn)可得f(x)=ax3+bx2+cx=a(x-1)x(x+1),求導(dǎo)利用根與系數(shù)的關(guān)系即可.
解答: 解:∵1和-1是函數(shù)f(x)的兩個(gè)零點(diǎn),
∴f(x)=ax3+bx2+cx=a(x-1)x(x+1),
∴x1和x2是f′(x)=a(3x2-1)=0的兩個(gè)根,
則x1•x2=-
1
3

故答案為:-
1
3
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)在求極值時(shí)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
3+i
i2
(i為虛數(shù)單位)的實(shí)部是(  )
A、3B、-1C、-3D、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)求異面直線AC與BC1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸異于原點(diǎn)的交點(diǎn)M處的切線為l1,g(x-1)與x軸的交點(diǎn)N處的切線為l2,并且l1與l2平行.
(1)求f(2)的值;
(2)已知實(shí)數(shù)t∈R,求函數(shù)y=f[xg(x)+t],x∈[1,e]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1
,其左右焦點(diǎn)為F1(-1,0)及F2(1,0),過(guò)點(diǎn)F1的直線交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D,E兩點(diǎn),且|AF1|、|F1F2|、|AF2|構(gòu)成等差數(shù)列.
(1)求橢圓C的方程;
(2)記△GF1D的面積為S1,△OED(O為原點(diǎn))的面積為S2.試問(wèn):是否存在直線AB,使得S1=S2?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-ax2,曲線y=f(x)在點(diǎn)(1,f(1))處的切線在x軸上的截距為
1
2-e

(1)求實(shí)數(shù)a的值;
(2)設(shè)g(x)=f(2x)-f(x),求證:g(x)在R上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的兩焦點(diǎn)坐標(biāo)分別為F1(-
3
,0),F(xiàn)2
3
,0),且橢圓過(guò)點(diǎn)P(1,-
3
2
).
(1)求橢圓方程;
(2)若 A為橢圓的左頂點(diǎn),作AM⊥AN與橢圓交于兩點(diǎn)M、N,試問(wèn):直線MN是否恒過(guò)x軸上的一個(gè)定點(diǎn)?若是,求出該點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y取值如下表:
x014568
y1.31.85.66.17.49.3
從所得散點(diǎn)圖中分析可知:y與x線性相關(guān),且
y
=0.95x+a,則x=13時(shí),y=( 。
A、1.45B、13.8
C、13D、12.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,AC邊上的高BH所在直線方程為x-2y-5=0.
(1)求AC邊所在直線方程;
(2)求頂點(diǎn)C的坐標(biāo);
(3)求直線BC的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案