設(shè)數(shù)列{an}n∈N滿足a0=0,a1=2,且對(duì)一切n∈N,有an+2=2an+1-an+2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)n∈N*時(shí),令bn=
n+1
n+2
.
1
an
,求數(shù)列{bn}的前n項(xiàng)和Sn
分析:(1)由an+2=2an+1-an+2,可得an+2-an+1=an+1-an+2,可知數(shù)列{an+1-an}是等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式即可得出an-an-1.再利用“累加求和”an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出.
(2)由于bn=
n+1
n+2
1
n(n+1)
=
1
2
(
1
n
-
1
n+2
)
.利用“裂項(xiàng)求和”即可得出.
解答:解:(1)由an+2=2an+1-an+2,可得an+2-an+1=an+1-an+2,
∴數(shù)列{an+1-an}是以a1-a0=2-0=2為首項(xiàng),2為公差的等差數(shù)列,
∴an-an-1=2+(n-1)×2=2n.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n+2(n-1)+…+4+2
=
n(2+2n)
2
=n(n+1)=n2+n.
an=n2+n
(2)bn=
n+1
n+2
1
n(n+1)
=
1
2
(
1
n
-
1
n+2
)

∴Sn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+
…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
2n+3
2(n+1)(n+2)
點(diǎn)評(píng):本題考查了通過變形化為等差數(shù)列的數(shù)列的通項(xiàng)公式的求法、等差數(shù)列的通項(xiàng)公式、“累加求和”、“裂項(xiàng)求和”等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},{bn}滿足:a1=4,a2=
5
2
an+1=
an+bn
2
,bn+1=
2anbn
an+bn
.?
(1)用an表示an+1;并證明:?n∈N+,an>2;?
(2)證明:{ln
an+2
an-2
}
是等比數(shù)列;?
(3)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,當(dāng)n≥2時(shí),Sn2(n+
4
3
)
是否有確定的大小關(guān)系?若有,加以證明;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實(shí)常數(shù),m≠-3且m≠0.
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且b1=a1,bn=
3
2
f(bn-1)(n∈N*,n≥2)
,求{bn}的通項(xiàng)公式;
(3)若m=1時(shí),設(shè)Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數(shù)k,使得對(duì)任意n∈N*均有Tn
k
8
成立,若存在求出k的值,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=2,am+an+am-n=
1
2
(a2m+a2n)+m-n,其中m,n∈N,m≥n
,數(shù)列{bn}滿足:bn=an+1-an
(I)求a0,a2;
(II)當(dāng)n∈N*時(shí),求證:數(shù)列{bn}為等差數(shù)列;
(III)設(shè)cn=
2n-2(bn-2)
n
(n∈N*),令Sn=c1+c2+…+cn
,求證:
n
2
-
1
3
S1
S2
+
S2
S3
+…+
Sn
sn+1
n
2
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年度北京五中第一學(xué)期高三數(shù)學(xué)期中考試 題型:044

設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足關(guān)系式tSn-(t+1)Sn-1=t(其中t為大于0的常數(shù),n∈N*,n≥2).

(1)求證:數(shù)列{an}是等比數(shù)列;

(2)設(shè)數(shù)列{an}的公比為f(t),構(gòu)造數(shù)列{bn},使b1=1,(n∈N*,n≥2),求數(shù)列{bn}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:濟(jì)南二模 題型:解答題

設(shè)數(shù)列{an},{bn}滿足:a1=4,a2=
5
2
,an+1=
an+bn
2
,bn+1=
2anbn
an+bn
.?
(1)用an表示an+1;并證明:?n∈N+,an>2;?
(2)證明:{ln
an+2
an-2
}
是等比數(shù)列;?
(3)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,當(dāng)n≥2時(shí),Sn2(n+
4
3
)
是否有確定的大小關(guān)系?若有,加以證明;若沒有,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案