【題目】設函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
【答案】(1) ;(2)證明見解析.
【解析】解:(1)方程7x-4y-12=0可化為y=x-3,
當x=2時,y=.
又f′(x)=a+,
于是,解得
故f(x)=x-.
(2)證明:設P(x0,y0)為曲線上任一點,由f′(x)=1+知,曲線在點P(x0,y0)處的切線方程為y-y0=(1+)·(x-x0),即y-(x0-)=(1+)(x-x0).
令x=0得,y=-,從而得切線與直線x=0,交點坐標為(0,- ).
令y=x,得y=x=2x0,從而得切線與直線y=x的交點坐標為(2x0,2x0).
所以點P(x0,y0)處的切線與直線x=0,y=x所圍成的三角形面積為|-||2x0|=6.
曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,此定值為6.
科目:高中數(shù)學 來源: 題型:
【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角坐標系xOy平面內(nèi),已知動點M到點D(﹣4,0)與E(﹣1,0)的距離之比為2.
(1)求動點M的軌跡C的方程;
(2)是否存在經(jīng)過點(﹣1,1)的直線l,它與曲線C相交于A,B兩個不同點,且滿足 (O為坐標原點)關系的點M也在曲線C上,如果存在,求出直線l的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣5:不等式選講
已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個不同的解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的一個上界.已知函數(shù), .
(1)若函數(shù)為奇函數(shù),求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構成的集合;
(3)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在一個坡度一定的山坡AC的頂上有一高度為25m的建筑物CD,為了測量該山坡相對于水平地面的坡角θ,在山坡的A處測得∠DAC=15°,沿山坡前進50m到達B處,又測得∠DBC=45°,根據(jù)以上數(shù)據(jù)可得cosθ= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標系與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸中,曲線C的方程為.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設曲線C與直線l交于點A、B,若點P的坐標為(1,1),求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一輛汽車在某段路程中的行駛速度與時間的關系如下圖:
(Ⅰ)求圖中陰影部分的面積,并說明所求面積的實際意義;
(Ⅱ)假設這輛汽車的里程表在汽車行駛這段路程前的讀數(shù)為,試將汽車行駛這段路程時汽車里程表讀數(shù)表示為時間的函數(shù),并求出當汽車里程表讀數(shù)為時,汽車行駛了多少時間?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com