若雙曲線
y2
16
-
x2
m
=1的離心率e=2,則它的焦點坐標(biāo)為
 
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:通過雙曲線方程求出雙曲線的離心率,利用已知的離心率,求出焦點坐標(biāo).
解答: 解:根據(jù)雙曲線方程:
y2
a2
-
x2
b2
=1
知,a2=16,b2=m,
在雙曲線中有:a2+b2=c2
∴離心率e=
c
a
=2⇒
c2
a2
=4
=
16+m
16
⇒m=48,
所以雙曲線的焦點坐標(biāo)為(0,±8).
故答案為:(0,±8).
點評:本題考查雙曲線方程的應(yīng)用,雙曲線基本性質(zhì),考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
,x>0
cosx,x≤0
,則f′(1)f(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜三棱柱的三視圖如圖所示,該斜三棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式a(x2+x+4)≥|x|對任意實數(shù)x都成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]⊆D,使得滿足:f(x)在[a,b]上是單調(diào)函數(shù)且在[a,b]上的值域為[2a,2b],則稱區(qū)間[a,b]為函數(shù)f(x)的“和諧區(qū)間”.下列函數(shù)中存在“和諧區(qū)間”的是
 

①f(x)=x3(x∈R)
②f(x)=
1
x
(x∈R,x≠0)
③f(x)=
4x
x2+1
(x∈R)
④f(x)=ex(x∈R)
⑤f(x)=lg|x|+2(x∈R,x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),過點P(-2,-4)的直線l:
x=-2+
2
2
t
y=-4+
2
2
t
(t為參數(shù))與C交于M,N兩點.
(1)求曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sina=
4
5
,a是第二象限的角,則cosa=( 。
A、-
3
5
B、
3
5
C、-
1
5
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使函數(shù)f(x)=
(3a-1)x+4a , x≤1
logax , x>1
在(-∞,+∞)上是減函數(shù)的一個充分不必要條件是( 。
A、
1
7
≤a<
1
3
B、0<a<
1
3
C、
1
7
<a<
1
3
D、0<a<
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(2,3),
b
=(x,y),
b
-
2a
=(1,7),則x,y的值分別是(  )
A、
x=-3
y=1
B、
x=
1
2
y=-2
C、
x=
3
2
y=5
D、
x=5
y=13

查看答案和解析>>

同步練習(xí)冊答案