已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),且
a
b
之間滿足關(guān)系:|k
a
+
b
|=
3
|
a
-k
b
|,其中k>0.
(1)用k表示
a
b

(2)求
a
b
的最小值,并求此時
a
b
夾角θ的大。
分析:(1)由
a
=(cosα,sinα),
b
=(cosβ,sinβ),可得|
a
|=|
b
|=1,結(jié)合|k
a
+
b
|=
3
|
a
-k
b
|,利用平方法,可得k2
a
2+
b
2+2k
a
b
=3(
a
2-2k
a
b
+k2
b
2),整理后可用k表示
a
b

(2)由(1)中函數(shù)的解析式,利用基本不等式,可分析出
a
b
的最小值,代入向量夾角公式,可得此時
a
b
夾角θ的大。
解答:解:∵|k
a
+
b
|=
3
|
a
-k
b
|兩邊平方,
得:|k
a
+
b
|2=3|
a
-k
b
|2
∴k2
a
2+
b
2+2k
a
b
=3(
a
2-2k
a
b
+k2
b
2
a
b
=
(3-k2)
a
2
 
+(3k2-1)
b
2
 
8k

a
=(cosα,sinα),
b
=(cosβ,sinβ),
a
2=1,
b
2=1,
a
b
=
k2+1
4k
.…(6分)
(2)∵k>0,
∴(k-1)2≥0,從而k2+1≥2k,
k2+1
4k
2k
4k
1
2

a
b
的最小值為
1
2
,
此時cosθ=
a
b
|
a
||
b
|
=
1
2

∴θ=60°,
a
b
夾角為60°.…(12分)
點評:本題考查的知識點是平面向量的綜合題,熟練掌握向量模計算的計算方式及平面向量夾角公式,是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義平面向量之間的一種運算“⊙”如下:對任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),點N(x,y)滿足
ON
=a⊙b(其中O為坐標原點),則|
ON
|2
的最大值為( 。
A、
2
B、2+
2
C、2-
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π.
(1)求證:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
b
與k
a
-
b
大小相等,求β-α(k≠0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ).
(1)若α-β=
6
,求
a
b
的值;
(2)若
a
b
=
4
5
,α=
π
8
,且α-β∈(-
π
2
,0)
,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•朝陽區(qū)一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π
(Ⅰ)求|
a
|的值;
(Ⅱ)求證:
a
+
b
a
-
b
互相垂直;
(Ⅲ)設|
a
+
b
|=|
a
-
b
|,求β-α的值.

查看答案和解析>>

同步練習冊答案