A. | (0,$\frac{1}{e}$) | B. | [$\frac{1}{e}$,+∞) | C. | (-∞,$\frac{1}{e}$] | D. | [e,+∞) |
分析 問題轉(zhuǎn)化為對任意x∈R*,不等式lnx-ax≤0恒成立,令f(x)=lnx-ax,(x>0),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:對任意x∈R*,不等式lnx≤ax恒成立,
即對任意x∈R*,不等式lnx-ax≤0恒成立,
令f(x)=lnx-ax,(x>0),則f′(x)=$\frac{1}{x}$-a,
a≤0時,f′(x)>0,f(x)遞增,無最大值,不合題意,
a>0時,令f′(x)>0,解得:0<x<$\frac{1}{a}$,令f′(x)<0,解得:x>$\frac{1}{a}$,
故f(x)在(0,$\frac{1}{a}$)遞增,在($\frac{1}{a}$,+∞)遞減,
故f(x)max=f($\frac{1}{a}$)=ln$\frac{1}{a}$-1≤0,
解得:a≥$\frac{1}{e}$,
故選:B.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$ | B. | $[-\sqrt{3},\sqrt{3}]$ | C. | [-2,2] | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | -20 | C. | -4 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -1 | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com