【題目】已知推理:“因為所有的金屬都能夠?qū)щ姡~能導(dǎo)電,所以銅是金屬”.則下列結(jié)論正確的是( )

A. 此推理大前提錯誤 B. 此推理小前提錯誤

C. 此推理的推理形式錯誤 D. 此推理無錯誤

【答案】C

【解析】分析:一般利用三段論來分析解答. 如果三段論的大前提是范圍對象A具有某性質(zhì),小前提應(yīng)該是B元素屬于范圍對象A,結(jié)論是B具有某性質(zhì),這個推理的形式才是正確的.

詳解:已知推理的大前提是:因為所有的金屬都能夠?qū)щ,所以推理的小前提?yīng)該是說A材料是金屬,結(jié)論是A能導(dǎo)電. 但是推理的小前提是說銅能導(dǎo)電,違背了三段論的推理要求,所以此推理的推理形式錯誤,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明a,bc中至少有一個大于0”,下列假設(shè)正確的是()

A. 假設(shè)ab,c都小于0 B. 假設(shè)a,b,c都大于0

C. 假設(shè)a,b,c中都不大于0 D. 假設(shè)a,bc中至多有一個大于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fx=log3x

1)若,判斷并證明函數(shù)y=gx)的奇偶性;

2)令,x[327],當(dāng)x取何值時hx)取得最小值,最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植物生長發(fā)育的數(shù)量y與時間x的關(guān)系如下表:

x

1

2

3

y

1

3

8

則下面的函數(shù)關(guān)系式中,能表達這種關(guān)系的是(  )

Ay2x1 Byx21

C.y=2x-1 D.y=1.5x2-2.5x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面是一段演繹推理:

大前提:如果直線平行于平面,則這條直線平行于平面內(nèi)的所有直線;

小前提:已知直線b∥平面α,直線a平面α;

結(jié)論:所以直線b∥直線a.在這個推理中(  )

A. 大前提正確,結(jié)論錯誤 B. 大前提錯誤,結(jié)論錯誤

C. 大、小前提正確,只有結(jié)論錯誤 D. 小前提與結(jié)論都是錯誤的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題等腰三角形的底角必是銳角”,下列假設(shè)正確的是( )

A. 等腰三角形的頂角不是銳角 B. 等腰三角形的底角為直角

C. 等腰三角形的底角為鈍角 D. 等腰三角形的底角為直角或鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體,棱長,過點平面正方體的面相交,交線圍成一個正三角形

(1)在圖中個正三角形(不必說明畫法和理由);

(2)平將該正方體成兩個幾何體,體積較大的幾何體的體積和表面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,底面ABCD是菱形,且.

1求證:平面平面;

2,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的離心率為,左頂點

求橢圓的標準方程;

設(shè)直線與橢圓交于不同兩點,且滿足求證:直線恒過定點,并求出定點的坐標;

的條件下,過,垂足為,求的軌跡方程

查看答案和解析>>

同步練習(xí)冊答案