分析 不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$對任意實數(shù)x都成立?(3-m)x2+(2-m)x+(2-m)≥0.對任意實數(shù)x都成立,對m分類討論即可得出.
解答 解:不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$,化為(3-m)x2+(2-m)x+(2-m)≥0.
∵不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$對任意實數(shù)x都成立,
∴(3-m)x2+(2-m)x+(2-m)≥0.對任意實數(shù)x都成立,
當m=3時,化為x+1≤0,不滿足要求,舍去;
當m≠3時,變形滿足$\left\{\begin{array}{l}{3-m>0}\\{△=(2-m)^{2}-4(3-m)(2-m)≤0}\end{array}\right.$,解得:m≤2.
故答案為:m≤2.
點評 本題考查了一元二次不等式的解集與判別式的關系,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 程序不同,結(jié)果不同 | B. | 程序相同,結(jié)果不同 | ||
C. | 程序不同,結(jié)果相同 | D. | 程序相同,結(jié)果相同 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com