【題目】某網(wǎng)站對“愛飛客”飛行大會的日關(guān)注量x(萬人)與日點贊量y(萬次)進行了統(tǒng)計對比,得到表格如下:

x

3

5

6

7

9

y

2

3

3

4

5

由散點圖象知,可以用回歸直線方程 來近似刻畫它們之間的關(guān)系.
(Ⅰ)求出y關(guān)于x的回歸直線方程,并預測日關(guān)注量為10萬人時的日點贊量;
(Ⅱ)一個三口之家參加“愛飛客”親子游戲,游戲規(guī)定:三人依次從裝有3個白球和2個紅球的箱子中不放回地各摸出一個球,大人摸出每個紅球得獎金10元,小孩摸出1個紅球得獎金50元.求該三口之家所得獎金總額不低于50元的概率.
參考公式:b= ; 參考數(shù)據(jù): =200, =112.

【答案】解:(Ⅰ)由 =6, =3.4, 得: =0.5, =0.4,
∴回歸直線方程為y=0.5x+0.4,
當x=10時, ,
即日關(guān)注量為10萬人時的日點贊量5.4萬次.
(Ⅱ)設(shè)獎金總額為ξ,
,

∴獎金總額不低于50元的概率為
【解析】(Ⅰ)結(jié)合所給的數(shù)據(jù)求出 的值,求出回歸方程即可;(Ⅱ)分別求出P(ξ=50)和P(ξ=60)的概率,從而求出滿足條件的答案即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函數(shù)y=f(x)圖象的一個對稱中心到它對稱軸的最近距離為
(1)求ω的值及f(x)的對稱軸方程;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=0,sinB= ,a= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種新產(chǎn)品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計出其中4天的價格如下表:

時間

第4天

第32天

第60天

第90天

價格(千元)

23

30

22

7

(Ⅰ)寫出價格f(x)關(guān)于時間x的函數(shù)關(guān)系式(x表示投放市場的第x天,x∈N*);
(Ⅱ)銷售量g(x)與時間x的函數(shù)關(guān)系式為 ,則該產(chǎn)品投放市場第幾天的銷售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,在甲地和乙地之間往返一次的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要運送不少于900人從甲地去乙地的旅客,并于當天返回,為使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?營運成本最小為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,A(1,3),BC邊所在的直線方程為y﹣1=0,AB邊上的中線所在的直線方程為x﹣3y+4=0. (Ⅰ)求B,C點的坐標;
(Ⅱ)求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某人在M汽車站的北偏西20°的方向上的A處,觀察到點C處有一輛汽車沿公路向M站行駛,公路的走向是M站的北偏東40°,開始時,汽車到A的距離為31千米,汽車前進20千米后,到A的距離縮短了10千米.問汽車還需行駛多遠,才能到達M汽車站?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}和{bn}(bn≠0,n∈N*),滿足a1=b1=1,anbn+1﹣an+1bn+bn+1bn=0
(1)令cn= ,證明數(shù)列{cn}是等差數(shù)列,并求{cn}的通項公式
(2)若bn=2n1 , 求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 的展開式各項系數(shù)和為M, 的展開式各項系數(shù)和為N,(x+1)n的展開式各項的系數(shù)和為P,且M+N﹣P=2016,試求 的展開式中:
(1)二項式系數(shù)最大的項;
(2)系數(shù)的絕對值最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點( ,﹣ ),且離心率為 . (Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點A(x1 , y1),B(x2 , y2)是橢圓C上的亮點,且x1≠x2 , 點P(1,0),證明:△PAB不可能為等邊三角形.

查看答案和解析>>

同步練習冊答案