已知函數(shù)
(Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +在1,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
(Ⅰ)的單調(diào)遞增區(qū)間是(1,+∞),的單調(diào)遞減區(qū)間是(0, 1).
(Ⅱ)實(shí)數(shù)a的取值范圍0,+∞)
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的 運(yùn)用。以及函數(shù)單調(diào)性的逆向的運(yùn)用
(1)根據(jù)函數(shù)的定義域,然后結(jié)合導(dǎo)數(shù),導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系求解得到單調(diào)區(qū)間。
(2)利用g(x)= +在1,+∞)上是單調(diào)函數(shù),則在1,+∞)上恒成立,然后分離參數(shù)的思想求解其范圍。解:(Ⅰ)的單調(diào)遞增區(qū)間是(1,+∞),的單調(diào)遞減區(qū)間是(0, 1).
(Ⅱ)由題意得,函數(shù)g(x)在1,+∞)上是單調(diào)函數(shù).
① 若函數(shù)g(x)為1,+∞)上的單調(diào)增函數(shù),則在1,+∞)上恒成立,
即在1, +∞)上恒成立,設(shè),∵在1,+∞)上單調(diào)遞減,
∴,∴a≥0
②若函數(shù)g(x)為1,+∞)上的單調(diào)減函數(shù),則在1,+∞)上恒成立,不可能.
∴實(shí)數(shù)a的取值范圍0,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)已知函數(shù)
(I)當(dāng)a=18時(shí),求函數(shù)的單調(diào)區(qū)間;(II)求函數(shù)在區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(Ⅰ)當(dāng)a=3時(shí),求f(x)的零點(diǎn);
(Ⅱ)求函數(shù)y=f (x)在區(qū)間 [ 1,2 ] 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
www.ks5u.co
已知函數(shù)
(I)當(dāng)a<0時(shí),求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在[1,e]上的最小值是求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省唐山市高三下學(xué)期第二次模擬考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知函數(shù)
(I)當(dāng)a=1時(shí),求的最小值;
(II)求證:在區(qū)間(0,1)單調(diào)遞減。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010屆江西省高三年級(jí)數(shù)學(xué)熱身卷(文科) 題型:解答題
(12分)已知函數(shù)
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象與直線y=ax只有一個(gè)公共點(diǎn),求實(shí)數(shù)b的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com